Taxi Cab Scheme
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5710   Accepted: 2393

Description

Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides. 
For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a - c| + |b - d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest,at least one minute before the new ride's scheduled departure. Note that some rides may end after midnight.

Input

On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.

Output

For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.

Sample Input

2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11

Sample Output

1
2

Source

二分匹配:

弄清楚题意比较重要:

出租车公司有n个预约, 每个预约有时间和地点, 地点分布在二维整数坐标系上, 地点之间的行驶时间为两点间的曼哈顿距离(|x1 - x2| + |y1 - y2|)。一辆车可以在运完一个乘客后运另一个乘客, 条件是此车要在预约开始前一分钟之前到达出发地, 问最少需要几辆车搞定所有预约。(摘自http://blog.sina.com.cn/s/blog_6635898a0100m54w.html)

我就是没弄清题意WA了好几次。弄清提议后开始构图,求最小边覆盖,还有就是这是有向图有所以构单边。

 //692K    79MS    C++    1333B    2014-06-05 11:26:44
#include<iostream>
#include<vector>
#define N 505
using namespace std;
struct node{
int a,b,c,d;
int time;
}p[N];
vector<int>V[N];
int match[N];
int vis[N];
int n;
int dfs(int u)
{
for(int i=;i<V[u].size();i++){
int v=V[u][i];
if(!vis[v]){
vis[v]=;
if(match[v]==- || dfs(match[v])){
match[v]=u;
return ;
}
}
}
return ;
}
int hungary()
{
int ret=;
memset(match,-,sizeof(match));
for(int i=;i<n;i++){
memset(vis,,sizeof(vis));
ret+=dfs(i);
}
return ret;
}
int main(void)
{
int t;
int time[N];
int dis[N];
int h,m;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) V[i].clear();
for(int i=;i<n;i++){
scanf("%d:%d %d%d%d%d",&h,&m,&p[i].a,&p[i].b,&p[i].c,&p[i].d);
p[i].time=abs(p[i].a-p[i].c)+abs(p[i].b-p[i].d);
time[i]=h*+m;
for(int j=;j<i;j++)
if(time[i]-time[j]>p[j].time+abs(p[i].a-p[j].c)+abs(p[i].b-p[j].d)){
//V[i].push_back(j);
V[j].push_back(i);
}
}
printf("%d\n",n-hungary());
}
return ;
}

poj 2060 Taxi Cab Scheme (二分匹配)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. poj 2060 Taxi Cab Scheme(DAG图的最小路径覆盖)

    题意: 出租车公司有M个订单. 订单格式:     hh:mm  a  b  c  d 含义:在hh:mm这个时刻客人将从(a,b)这个位置出发,他(她)要去(c,d)这个位置. 规定1:从(a,b) ...

  3. POJ:2060-Taxi Cab Scheme(最小路径覆盖)

    传送门:http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS Memory Limit: 30000K Total Sub ...

  4. Taxi Cab Scheme POJ && HDU

    Online Judge Problem Set Authors Online Contests User Web Board Home Page F.A.Qs Statistical Charts ...

  5. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  6. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  7. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  8. 【HDU1960】Taxi Cab Scheme(最小路径覆盖)

    Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. HDU 1350 Taxi Cab Scheme

    Taxi Cab Scheme Time Limit: 10000ms Memory Limit: 32768KB This problem will be judged on HDU. Origin ...

随机推荐

  1. error LNK2005: _DllMain@12 已经在 dllmain.obj 中定义

    error LNK2005: _DllMain@ 已经在 dllmain.obj 中定义 今天遇到了同样的问题,搜索搜到了这里,后来解决了........ 创建解决方案时,用的是WIN32 DLL,添 ...

  2. spring-实现配置文件读取

    spring 实现配置读取 Java 的配置读取方式一般是采用java.utils.Properties 或是apache的Configuration工具:然而 spring 框架内置了配置文件的读取 ...

  3. Embedded database support

    http://docs.spring.io/spring-framework/docs/3.0.0.M4/reference/html/ch12s08.html     <jdbc:embedd ...

  4. ES(一): 架构及原理

    Elasticsearch 是一个兼有搜索引擎和NoSQL数据库功能的开源系统,基于Java/Lucene构建,可以用于全文搜索,结构化搜索以及近实时分析.可以说Lucene是当今最先进,最高效的全功 ...

  5. [Java] - 格式字符串替换方法

    Java 字符串格式替换方法有两种,一种是使用String.format(...),另一种是使用MessageFormat.format(...) 如下: import java.text.Messa ...

  6. php命令传参

    1.url方式 $param = array(); if ($argc > 1) { parse_str ( $argv [1], $param ); foreach ( $param as $ ...

  7. zxing 一维码部分深入分析与实际应用,识别卡片数量,Android数卡器

    打算修改zxing 源码应用到其它方面,所以最近花了点时间阅读其源码,无意中找到这篇博客,条码扫描二维码扫描——ZXing android 简化源码分析 对过程的分析还是可以参考的.原作者给出的一个基 ...

  8. OAF_JDBC系列1 - 数据库交互取值方式(案例)

    2014-06-15 Created By BaoXinjian

  9. CPS冥想 - 1 重新审视CPS

    这篇文章是在阅读Eric Lippert大神的MSDN Blog文章时同步写成的,其中主要是各种翻译,同时还混杂自己阅读文章的笔记和感想. 原博文地址 http://blogs.msdn.com/b/ ...

  10. 使用ADD_CUSTOM_COMMAND 添加自定义命令

    e.g. ADD_CUSTOM_COMMAND(           TARGET world_server           COMMAND cp ${CMAKE_SOURCE_DIR}/CMak ...