Taxi Cab Scheme
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5710   Accepted: 2393

Description

Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coordination of the cabs in order to pick up the customers calling to get a cab as soon as possible,there is also a need to schedule all the taxi rides which have been booked in advance.Given a list of all booked taxi rides for the next day, you want to minimise the number of cabs needed to carry out all of the rides. 
For the sake of simplicity, we model a city as a rectangular grid. An address in the city is denoted by two integers: the street and avenue number. The time needed to get from the address a, b to c, d by taxi is |a - c| + |b - d| minutes. A cab may carry out a booked ride if it is its first ride of the day, or if it can get to the source address of the new ride from its latest,at least one minute before the new ride's scheduled departure. Note that some rides may end after midnight.

Input

On the first line of the input is a single positive integer N, telling the number of test scenarios to follow. Each scenario begins with a line containing an integer M, 0 < M < 500, being the number of booked taxi rides. The following M lines contain the rides. Each ride is described by a departure time on the format hh:mm (ranging from 00:00 to 23:59), two integers a b that are the coordinates of the source address and two integers c d that are the coordinates of the destination address. All coordinates are at least 0 and strictly smaller than 200. The booked rides in each scenario are sorted in order of increasing departure time.

Output

For each scenario, output one line containing the minimum number of cabs required to carry out all the booked taxi rides.

Sample Input

2
2
08:00 10 11 9 16
08:07 9 16 10 11
2
08:00 10 11 9 16
08:06 9 16 10 11

Sample Output

1
2

Source

二分匹配:

弄清楚题意比较重要:

出租车公司有n个预约, 每个预约有时间和地点, 地点分布在二维整数坐标系上, 地点之间的行驶时间为两点间的曼哈顿距离(|x1 - x2| + |y1 - y2|)。一辆车可以在运完一个乘客后运另一个乘客, 条件是此车要在预约开始前一分钟之前到达出发地, 问最少需要几辆车搞定所有预约。(摘自http://blog.sina.com.cn/s/blog_6635898a0100m54w.html)

我就是没弄清题意WA了好几次。弄清提议后开始构图,求最小边覆盖,还有就是这是有向图有所以构单边。

 //692K    79MS    C++    1333B    2014-06-05 11:26:44
#include<iostream>
#include<vector>
#define N 505
using namespace std;
struct node{
int a,b,c,d;
int time;
}p[N];
vector<int>V[N];
int match[N];
int vis[N];
int n;
int dfs(int u)
{
for(int i=;i<V[u].size();i++){
int v=V[u][i];
if(!vis[v]){
vis[v]=;
if(match[v]==- || dfs(match[v])){
match[v]=u;
return ;
}
}
}
return ;
}
int hungary()
{
int ret=;
memset(match,-,sizeof(match));
for(int i=;i<n;i++){
memset(vis,,sizeof(vis));
ret+=dfs(i);
}
return ret;
}
int main(void)
{
int t;
int time[N];
int dis[N];
int h,m;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) V[i].clear();
for(int i=;i<n;i++){
scanf("%d:%d %d%d%d%d",&h,&m,&p[i].a,&p[i].b,&p[i].c,&p[i].d);
p[i].time=abs(p[i].a-p[i].c)+abs(p[i].b-p[i].d);
time[i]=h*+m;
for(int j=;j<i;j++)
if(time[i]-time[j]>p[j].time+abs(p[i].a-p[j].c)+abs(p[i].b-p[j].d)){
//V[i].push_back(j);
V[j].push_back(i);
}
}
printf("%d\n",n-hungary());
}
return ;
}

poj 2060 Taxi Cab Scheme (二分匹配)的更多相关文章

  1. poj 2060 Taxi Cab Scheme (最小路径覆盖)

    http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS   Memory Limit: 30000K Total Submi ...

  2. poj 2060 Taxi Cab Scheme(DAG图的最小路径覆盖)

    题意: 出租车公司有M个订单. 订单格式:     hh:mm  a  b  c  d 含义:在hh:mm这个时刻客人将从(a,b)这个位置出发,他(她)要去(c,d)这个位置. 规定1:从(a,b) ...

  3. POJ:2060-Taxi Cab Scheme(最小路径覆盖)

    传送门:http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS Memory Limit: 30000K Total Sub ...

  4. Taxi Cab Scheme POJ && HDU

    Online Judge Problem Set Authors Online Contests User Web Board Home Page F.A.Qs Statistical Charts ...

  5. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  6. 二分图最小路径覆盖--poj2060 Taxi Cab Scheme

    Taxi Cab Scheme 时间限制: 1 Sec  内存限制: 64 MB 题目描述 Running a taxi station is not all that simple. Apart f ...

  7. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  8. 【HDU1960】Taxi Cab Scheme(最小路径覆盖)

    Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. HDU 1350 Taxi Cab Scheme

    Taxi Cab Scheme Time Limit: 10000ms Memory Limit: 32768KB This problem will be judged on HDU. Origin ...

随机推荐

  1. 基于MVC4+EasyUI的Web开发框架形成之旅--界面控件的使用

    在前面介绍了两篇关于我的基于MVC4+EasyUI技术的Web开发框架的随笔,本篇继续介绍其中界面部分的一些使用知识,包括控件的赋值.取值.清空,以及相关的使用. 我们知道,一般Web界面包括的界面控 ...

  2. MVC缓存OutputCacheAttribute 类提高网站效率(转)

    原文转自:http://www.cnblogs.com/iamlilinfeng/p/4419362.html 命名空间:  System.Web.Mvc 程序集:  System.Web.Mvc(在 ...

  3. mac10.9+php5.5.15+brew0.9.5的安装

      Brew 是 Mac 下面的包管理工具,通过 Github 托管适合 Mac 的编译配置以及 Patch,可以方便的安装开发工具. Mac 自带ruby 所以安装起来很方便,同时它也会自动把git ...

  4. pt-fifo-split使用

    percona-toolkit系列-pt-find http://blog.itpub.net/23249684/viewspace-1354308/ 在<mysql插入/更新数据>这篇文 ...

  5. 使用lipo 查看静态库命令

    lipo -info .a 的: find . -name *.a -exec lipo -info "{}" \; framework 的: find . -name *.fra ...

  6. SQL Server复制需要有实际的服务器名称才能连接到服务器

    服务器上安装的WIN2008 R2,然后没有在意机器名,安装了SQL2008 R2数据库之后,配置AD域的时候修改了机器名. 然后,开始配置数据库镜像同步的时候,先试了下数据库复制发布,结果提示“SQ ...

  7. 45. Scramble String

    Scramble String Given a string s1, we may represent it as a binary tree by partitioning it to two no ...

  8. 五、selecting with the API

    1. 命令通常从selection list中得到input, 调用MGlobal::getActiveSelectionList(MSelectionList &dest, bool ord ...

  9. Linux字符界面下用户账户的设置

    在Linux系统字符界面下创建.修改以及删除用户账户主要使用useradd,usermod和userdel这3个命令. 一.创建用户账户 创建用户账户就是在系统中创建一个新账户,然后为新账户分配用户U ...

  10. zmap使用笔记

    zmap使用笔记 zmap, 一个网络端口开放性的快速扫描工具.至于这个工具的特色,配置参数,和比的工具的对比,不做介绍.只记录一下近期使用过程中,遇到的问题.软件版本:2.1.1 传言与现实 传言: ...