题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小。

用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当x取最小合法正整数解时y的取值,当y小于0时,说明应该放在a的另一边,变为正值。同理当y取最小时,可得到另一组解,比较两组解,取最小即可。

#include<stdio.h>
int ex_gcd(int a,int b,int &x,int &y){
if(!b){
x=,y=;
return a;
}
int ans=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return ans;
}
void cal(int a,int b,int c){
int x,y,xx,yy;
int d=ex_gcd(a,b,x,y);
xx=x,yy=y;
a/=d,b/=d,c/=d;
x=((x*c)%b+b)%b;
y=(c-a*x)/b;
if(y<) y=-y;
yy=((yy*c)%a+a)%a;
xx=(c-b*yy)/a;
if(xx<) xx=-xx;
if(x+y>xx+yy) x=xx,y=yy;
printf("%d %d\n",x,y);
}
int main(){
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c)){
if(!a&&!b&&!c) break;
cal(a,b,c);
}
return ;
}

POJ 2142 The Balance【扩展欧几里德】的更多相关文章

  1. POJ 2142 - The Balance [ 扩展欧几里得 ]

    题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...

  2. POJ.2142 The Balance (拓展欧几里得)

    POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...

  3. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  4. POJ2142 The Balance (扩展欧几里德)

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia The Balance 题目大意  你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<= ...

  5. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  6. POJ 2142 The Balance (解不定方程,找最小值)

    这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...

  7. poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的

    题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用 开始时我列出来三个方程 : a*x+b*y=d; a*x-b*y=d; b*y-ax=d; 傻眼 ...

  8. poj 2115 C Looooops 扩展欧几里德

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23616   Accepted: 6517 Descr ...

  9. POJ-2142 The Balance 扩展欧几里德(+绝对值和最小化)

    题目链接:https://cn.vjudge.net/problem/POJ-2142 题意 自己看题吧,懒得解释 思路 第一部分就是扩展欧几里德 接下来是根据 $ x=x_0+kb', y=y_0- ...

随机推荐

  1. PHP获取APK的包信息

    这段时间太忙了,一个月没有写博客了,稍微闲下来就感觉把在开发中遇到的问题记录下来 php上传安卓apk包的时候,需要获取安卓apk包内的信息 <?php /*解析安卓apk包中的压缩XML文件, ...

  2. ANSI X9.19 MAC算法

    /// <summary> /// 获取MAC校验字节数据 /// </summary> /// <param name="bankData"> ...

  3. 切换到percona server各种问题

    这两天把七八台服务器全部切换到了percona server,相关注意事项如下: 1.JDBC报ERROR 1862 (HY000): Your password has expired. To lo ...

  4. Error writing file‘frm‘(Errcode: 28)

    Error writing file‘frm‘(Errcode: 28)   mysql出现这个错误,表示磁盘已经满了,该增加容量了.

  5. js封装tab标签页

    <html> <head> <title></title> <meta charset="UTF-8"> <sty ...

  6. 访问SAP的Domain的Value Range

    访问Domain的Value Range有两种方法: 1.直接访问表 dd07l和dd07T     select * from dd07l            where domname   = ...

  7. File类的常用方法

    public static void GetFileInfo()    {                File file=new File("e:","two.txt ...

  8. PAT 01-2

    #include<stdio.h> #include<stdlib.h> int main() { int k; int *data; int i; int ThisSum, ...

  9. C++语言-01-简介

    简介 C++语言是C语言的超集,它扩充和完善了C语言:C++语言是一种静态类型的.编译时的.跨平台的.不规则的中级编程语言,综合了高级语言和低级语言的特点 C++支持的编程类型 面向对象编程 过程化编 ...

  10. java获取时间戳的方法

    JAVA 获取当前月的初始时间的时间戳 public static long getMonthFirstDay() { Calendar calendar = Calendar.getInstance ...