Tom and matrix

Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226


Mean:

题意很简单,略。

analyse:

直接可以用Lucas定理+快速幂水过的,但是我却作死的用了另一种方法。

方法一:Lucas定理+快速幂水过

方法二:首先问题可以转化为求(0,0),(n,m)这个子矩阵的所有数之和。画个图容易得到一个做法,对于n<=m,答案就是2^0+2^1+...+2^m=2^(m+1)-1,对于n>m,答案由两部分构成,一部分是2^(m+1)-1,另一部分是sigma i:m+1->n f[i][m],f[i][m]表示第i行前m列的数之和,f数组存在如下关系,f[i][m]=f[i-1][m]*2-C[i-1][m],f[m][m]=2^m。还有另一种思路:第i列的所有数之和为C(i,i)+C(i+1,i)+...+C(n,i)=C(n+1,i+1),于是答案就是sigma i:0->min(n,m) C(n+1,i+1)。

Lucas定理:由于题目给定的模是可变的质数,且质数可能很小,那么就不能直接用阶乘和阶乘的逆相乘了,需要用到Lucas定理,公式:C(n,m)%P=C(n/P,m/P)*C(n%P,m%P),c(n,m)=0(n<m)。当然最终还是要预处理阶乘和阶乘的逆来得到答案。复杂度O(nlogP+nlogn)

Time complexity: O(n)

Source code: 

Lucas定理+快速幂

/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-05-21-23.28
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define LL long long
#define ULL unsigned long long
using namespace std; const int maxn=;
struct cell
{
int x,y;
bool operator<(cell c) const
{
return x==c.x?(y<c.y):(x<c.x);
}
}p[];
LL mod;
LL Pow(LL a,LL b)
{
LL ret=;
a%=mod;
while(b)
{
if(b&) ret=ret*a%mod;
a=a*a%mod;
b>>=;
}
return ret%mod;
}
namespace lucas
{
LL A[maxn],inv[maxn];
void init()
{
A[]=,A[]=;
inv[]=;inv[]=;
for(int i=;i<maxn;i++)
{A[i]=A[i-]*(LL)i%mod;inv[i]=Pow(A[i],mod-);}
}
LL Lucas(LL a,LL b)
{ if(a<b) return ;
if(a<mod&&b<mod) return (A[a]*inv[b]%mod)*inv[a-b]%mod;
return Lucas(a/mod,b/mod)*Lucas(a%mod,b%mod)%mod;
}
}
using namespace lucas; int main()
{
ios_base::sync_with_stdio(false);
cin.tie();
while(cin>>p[].x>>p[].y>>p[].x>>p[].y>>mod)
{
if(p[].y>p[].x&&p[].y>p[].x&&p[].y>p[].x) {printf("0\n");continue;}
init();
sort(p,p+);
if(!(p[].x<=p[].x && p[].y<=p[].y))
{
int x1=p[].x,y1=p[].y,x2=p[].x,y2=p[].y;
p[].x=x1,p[].y=y2,p[].x=x2,p[].y=y1;
}
LL sta=p[].x,en=p[].x,h=p[].y,ans=;
while(h<=p[].y && sta<=en )
{
if(sta<h) sta=h;
ans=(ans+Lucas(en+,h+)-Lucas(sta,h+)+mod)%mod;
h++;
}
printf("%lld\n",ans); }
return ;
}
/* */

方法二:

/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-05-21-02.58
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define LL long long
#define ULL unsigned long long
using namespace std;
struct cell
{
int x,y;
bool operator<(cell c) const
{
return x==c.x?(y<c.y):(x<c.x);
}
}p[];
LL mod;
LL inv[],A[];
inline LL Pow(LL a,LL b)
{
LL ret=;
a%=mod;
while(b)
{
if(b&) ret=ret*a%mod;
a=a*a%mod;
b>>=;
}
return (ret-)%mod;
} void init()
{
A[]=,A[]=;
inv[]=;inv[]=;
for(int i=;i<;i++)
{A[i]=A[i-]*(LL)i%mod;inv[i]=Pow(A[i],mod-);}
}
LL Lucas(LL a,LL b)
{
if(a<b) return ;
if(a<mod&&b<mod) return (A[a]*inv[b]%mod)*inv[a-b]%mod;
return Lucas(a/mod,b/mod)*Lucas(a%mod,b%mod)%mod;
} inline LL Pow(LL b)
{
b=b+;
if(b<) return ;
LL a=;
LL ret=;
a%=mod;
while(b)
{
if(b&) ret=ret*a%mod;
a=a*a%mod;
b>>=;
}
return (ret-)%mod;
} inline int calc_Matrix(int x,int y)
{
if(x<||y<) return ;
if(x<=y)
return Pow(x);
else
{
LL sum1=Pow(y);
LL tmp=Pow(y)-Pow(y-);
LL sum2=;
for(int i=y+;i<=x;++i)
{
tmp=tmp*-(int)Lucas((LL)i-,(LL)y);
tmp%=mod;
sum2+=tmp;
sum2%=mod;
}
return (sum1+sum2)%mod;
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie();
while(cin>>p[].x>>p[].y>>p[].x>>p[].y>>mod)
{
if(p[].y>p[].x&&p[].y>p[].x&&p[].y>p[].x) {printf("0\n");continue;}
init();
sort(p,p+);
if(!(p[].x<=p[].x && p[].y<=p[].y))
{
int x1=p[].x,y1=p[].y,x2=p[].x,y2=p[].y;
p[].x=x1,p[].y=y2,p[].x=x2,p[].y=y1;
}
cout<<(calc_Matrix(p[].x,p[].y)-calc_Matrix(p[].x-,p[].y)-calc_Matrix(p[].x,p[].y-)+calc_Matrix(p[].x-,p[].y-))%mod<<endl;
}
return ;
}
/* */

组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix的更多相关文章

  1. HDU 5226 Tom and matrix(组合数学+Lucas定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...

  2. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  3. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  4. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  7. 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it

    http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...

  8. UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

    题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...

  9. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

随机推荐

  1. mysql数据库导入和导出

    Mysql数据中,使用时,总是会碰见导入和导出情况,所以如何正确的导入导出,非常重要!下面根据工作中用到的方法,会不管补充: 导入: 直接在Mysql中导入: mysql>use databas ...

  2. 由于源码使用是c\c++与oc混编导致Unknown type name 'NSString'

    今天看到个问题,编辑工程提示Unknown type name 'NSString',如下图 解决方案三: 将Compile Sources As 改为 Objective-C++

  3. gulp前端自动化构建工具使用

    (1)新建项目目录gulp_web (2)项目目录下建目录src里面存放需要进行gulp处理的文件目录及文件 (3)gulpfile.js文件内容为声明需要打包应用的gulp组件及打包文件路径和打包任 ...

  4. Hibernate缓存原理与策略 Hibernate缓存原理:

    Hibernate缓存原理: 对于Hibernate这类ORM而言,缓存显的尤为重要,它是持久层性能提升的关键.简单来讲Hibernate就是对JDBC进行封装,以实现内部状态的管理,OR关系的映射等 ...

  5. Linux 导入epel源

    rpm -ivh  http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm rpm -ivh http:// ...

  6. Git简记

    1. 如何在GitHub上下载资源? 有2种方法: (1)直接在WebBrowser中下载. 比如要下载 https://github.com/numbbbbb/progit-zh-pdf-epub- ...

  7. Spark源码系列(五)分布式缓存

    这一章想讲一下Spark的缓存是如何实现的.这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this. ...

  8. idea使用maven启动tomcat

    1.设置tomcat,如图: 2.添加war包 3.修改pom.xml 删除可能的选项,如果有下面的代码,删除掉 4.选择使用的resources目录 5.启动即可

  9. Domain Space

    Bluehost Register Page http://www.bluehost.com/track/weipengp

  10. [PaPaPa][需求说明书][V0.3]

    PaPaPa软件需求说明书V0.3 前   言 不好意思,本文是没有前言的. 别说是前言了,其实关于界面的内容我也是不打算写!!   因为我知道你们想要的界面是这样的: 再不济也应该是这样的: 但是我 ...