拉格朗日乘子法和KKT条件
拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。
对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法。
拉格朗日乘子法
先来看拉格朗日乘子法是什么,再讲为什么。
$\min\;f(x)\\s.t.\;h_{i}(x)=0\;\;\;\;i=1,2...,n$
这个问题转换为
\begin{equation}min\;[f(x)+\sum_{i=1}^{n}\lambda_{i}h_{i}(x)]\label{lagrange}\end{equation}
其中$\lambda_{i}\ne{0}$,称为拉格朗日乘子。
下面看一下wikipedia上是如何解释拉格朗日乘子法的合理性的。
现有一个二维的优化问题:
$\min\;f(x,y)\\s.t.\;g(x,y)=c$
我们可以画图来辅助思考。

绿线标出的是约束$g(x,y)=c$的点的轨迹。蓝线是$f(x,y)$的等高线。箭头表示斜率,和等高线的法线平行。
从图上可以直观地看到在最优解处,f和g的斜率平行。
$\bigtriangledown[f(x,y)+\lambda(g(x,y)-1)]=0\;\;\;\;\lambda\ne{0}$
一旦求出$\lambda$的值,将其套入下式,易求在无约束极值和极值所对应的点。
$F(x,y)=f(x,y)+\lambda(g(x,y)-c)$
新方程$F(x,y)$在达到极值时与$f(x,y)$相等,因为$F(x,y)$达到极值时$g(x,y)-c$总等于零。
\eqref{lagrange}取得极小值时其导数为0,即$\bigtriangledown{f(x)}+\bigtriangledown{\sum_{i=1}^{n}\lambda_{i}h_{i}(x)}=0$,也就是说$f(x)$和$h(x)$的梯度共线。
KKT条件
先看KKT条件是什么,再讲为什么。
$\begin{equation}let\;L(x,\mu)=f(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\end{equation}$
其中$\mu_{k}\ge{0},g_{k}(x)\le{0}$
$\because \left.\begin{matrix}\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\mu{g(x)}\le{0}$
$\therefore$ \begin{equation}\max_{\mu}L(x,\mu)=f(x)\label{a}\end{equation}
$\therefore$\begin{equation}\min_{x}f(x)=\min_{x}\max_{\mu}L(x,\mu)\label{firsthalf}\end{equation}
$\max_{\mu}\min_{x}L(x,\mu)=\max_{\mu}[\min_{x}f(x)+\min_{x}\mu{g(x)}]=\max_{\mu}\min_{x}f(x)+\max_{\mu}\min_{x}\mu{g(x)}=\min_{x}f(x)+\max_{\mu}\min_{x}\mu{g(x)}$
又$\because\left.\begin{matrix}\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\min_{x}\mu{g(x)}=\left\{\begin{matrix}0 & if\;\mu=0\;or\;g(x)=0\\ -\infty & if\;\mu>0\;and\;g(x)<0\end{matrix}\right.$
$\therefore \max_{\mu}\min_{x}\mu{g(x)}=0$此时$\mu=0\;or\;g(x)=0$
\begin{equation}\therefore \max_{\mu}\min_{x}L(x,\mu)=\min_{x}f(x)+\max_{\mu}\min_{x}\mu{g(x)}=\min_{x}f(x)\label{secondhalf}\end{equation}此时$\mu=0\;or\;g(x)=0$
联合\eqref{firsthalf},\eqref{secondhalf}我们得到$\min_{x}\max_{\mu}L(x,\mu)=\max_{\mu}\min_{x}L(x,\mu)$
亦即$\left.\begin{matrix}L(x,\mu)=f(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\\\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\min_{x}\max_{\mu}L(x,\mu)=\max_{\mu}\min_{x}L(x,\mu)=\min_{x}f(x)$
我们把$\max_{\mu}\min_{x}L(x,\mu)$称为原问题$\min_{x}\max_{\mu}L(x,\mu)$的对偶问题,上式表明当满足一定条件时原问题、对偶的解、以及$\min_{x}f(x)$是相同的,且在最优解$x^*$处$\mu=0\;or\;g(x^*)=0$。把$x^*$代入\eqref{a}得$\max_{\mu}L(x^*,\mu)=f(x^*)$,由\eqref{secondhalf}得$\max_{\mu}\min_{x}L(x,\mu)=f(x^*)$,所以$L(x^*,\mu)=\min_{x}L(x,\mu)$,这说明$x^*$也是$L(x,\mu)$的极值点,即$\frac{\partial{L(x,\mu)}}{\partial{x}}|_{x=x^*}=0$。
最后总结一下:
$\left.\begin{matrix}L(x,\mu)=f(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\\\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\left\{\begin{matrix}\min_{x}\max_{\mu}L(x,\mu)=\max_{\mu}\min_{x}L(x,\mu)=\min_{x}f(x)=f(x^*)\\\mu_{k}{g_{k}(x^*)=0}\\\frac{\partial{L(x,\mu)}}{\partial{x}}|_{x=x^*}=0\end{matrix}\right.$
KKT条件是拉格朗日乘子法的泛化,如果我们把等式约束和不等式约束一并纳入进来则表现为:
$\left.\begin{matrix}L(x,\lambda,\mu)=f(x)+\sum_{i=1}^{n}\lambda_{i}h_{i}(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\\\lambda_{i}\ne{0}\\h_{i}(x)=0\\\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\left\{\begin{matrix}\min_{x}\max_{\mu}L(x,\lambda,\mu)=\max_{\mu}\min_{x}L(x,\lambda,\mu)=\min_{x}f(x)=f(x^*)\\\mu_{k}{g_{k}(x^*)=0}\\\frac{\partial{L(x,\lambda,\mu)}}{\partial{x}}|_{x=x^*}=0\end{matrix}\right.$
注:$x,\lambda,\mu$都是向量。
$\frac{\partial{L(x,\lambda,\mu)}}{\partial{x}}|_{x=x^*}=0$表明$f(x)$在极值点$x^*$处的梯度是各个$h_{i}(x^*)$和$g_{k}(x^*)$梯度的线性组合。
转载 http://www.cnblogs.com/zhangchaoyang/articles/2726873.html
拉格朗日乘子法和KKT条件的更多相关文章
- 关于拉格朗日乘子法和KKT条件
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...
- 真正理解拉格朗日乘子法和 KKT 条件
这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容. 首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\] 如 ...
- 机器学习笔记——拉格朗日乘子法和KKT条件
拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...
- 重温拉格朗日乘子法和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 第99:真正理解拉格朗日乘子法和 KKT 条件
- 拉格朗日乘子法&KKT条件
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前 ...
- 拉格朗日乘子法 - KKT条件 - 对偶问题
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
随机推荐
- 基于案例贯通 Spark Streaming 流计算框架的运行源码
本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例 ...
- ant安装(linux)
1.下载 下载地址:http://ant.apache.org/bindownload.cgi 下载apache-ant-1.9.7-bin.tar.gz(当前最新版本),将该下载包拷贝到/data/ ...
- js根据className获取元素封装
虽然有了getElementsByClassName,但是ie低版本不支持,所以我们需要单独定义一个getByClass function getByClass(className,parent){ ...
- Uiautomator自动编译运行脚本
Uiautomator的编译运行过程需要输入好几个命令,太麻烦. 花了点时间写了个简单的bat.方便多了.id输入当前使用的SDK ID号(android list target命令可以查看到),cl ...
- Mysql数据库的使用经验总结
1. 对mysql插入中文的时候显示乱码,搞了很多天,把服务端.客户端和数据库的编码全改为u8了又重新创建数据库和表还是不行,到最后却发现没有乱码!原来只是windows的cmd没有支持u8,换个客户 ...
- MongoEngine简易教程(转)
原文:http://www.xefan.com/archives/84063.html Mongoengine教程(1)——概述 Mongoengine教程(2)——文档模式 Mongoengine教 ...
- 让 Terminal/vim 使用 Solarized 配色
经过亲身体验,终于使用上了solarized的配色,之前配出来相差太多,于是找到这篇参考博文:http://blog.csdn.net/angle_birds/article/details/1169 ...
- C#DataGridView中的常用技巧
0(最基本的技巧). 获取某列中的某行(某单元格)中的内容 this.currentposition = this.dataGridView1.BindingContext [this.dataG ...
- 【BZOJ2756】奇怪的游戏(二分,最小割)
题意: Blinker最近喜欢上一个奇怪的游戏.这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻的格子,并使这两个数都加上 1.现在 Blinker 想知道最 ...
- (八) 一起学 Unix 环境高级编程 (APUE) 之 信号
. . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...