POJ 3177 Redundant Paths

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12598   Accepted: 5330

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes. 
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 /*这是一个63分的代码,因为没有注意到题目中的重边问题,以后要注意有重边的图和没有重边的图的tarjan求桥的算法,是不同的*/
#include<iostream>
using namespace std;
#include<cstdio>
#define N 5001
#define R 10010
#include<stack>
#include<queue>
#include<cstring>
queue<int>que;
bool qiao[R]={},visit[N]={},visit_edge[R<<];
struct Edge{
int u,v,last;
}edge[R*];
int head[N],du[N],f,r,father[N],dfn[N],low[N],topt=,t=-;
int ans[N]={};
void add_edge(int u,int v)
{
++t;
edge[t].u=u;
edge[t].v=v;
edge[t].last=head[u];
head[u]=t;
}
void input()
{
memset(head,-,sizeof(head));
int u,v;
scanf("%d%d",&f,&r);
for(int i=;i<=r;++i)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
r<<=;
}
void tarjan(int u)
{
dfn[u]=low[u]=++topt;
for(int l=head[u];l!=-;l=edge[l].last)
{
int v=edge[l].v;
if(!visit_edge[l]&&!visit_edge[l^])
{
visit_edge[l]=true;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]) qiao[l]=true;
}
else low[u]=min(low[u],dfn[v]);
}
}
}
void suo_dian()
{
for(int i=;i<=f;++i)
{
if(!visit[i])
{
ans[++ans[]]=i;
que.push(i);
visit[i]=true;
while(!que.empty())
{
int x=que.front();
father[x]=i;
que.pop();
for(int l=head[x];l!=-;l=edge[l].last)
{
if(qiao[l]||visit[edge[l].v]) continue;
que.push(edge[l].v);
visit[edge[l].v]=true;
}
} }
}
}
void re_jiantu()
{
for(int l=;l<=r;++l)
{
if(father[edge[l].u]!=father[edge[l].v])
{
du[father[edge[l].u]]++;
du[father[edge[l].v]]++;
}
}
}
int main()
{
freopen("rpaths.in","r",stdin);
freopen("rpaths.out","w",stdout);
input();
for(int i=;i<=f;++i)
{
if(!dfn[i])
tarjan(i);
}
suo_dian();
re_jiantu();
int sum=;
for(int i=;i<=ans[];++i)
if(du[ans[i]]==)
sum++;
printf("%d\n",(sum+)/);
fclose(stdin);fclose(stdout);
return ;
}

正确代码及模板:

 #define N 5011
#include<iostream>
using namespace std;
#define M 10010
#include<cstdio>
#include<cstring>
struct Gra{
int n,m,ans,head[N],topt,dfn[N],low[N],t,cnt[N];
bool visit[M<<];
struct Edge{
int v,last;
}edge[M<<];
void init(int f,int r)
{/*初始化不要在上面,上面只是声明,不是变量*/
ans=,topt=,t=-;
n=f;m=r;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(cnt,,sizeof(cnt));
memset(visit,false,sizeof(visit));
}
void add_edge(int x,int y)
{
++t;
edge[t].v=y;
edge[t].last=head[x];
head[x]=t;
}
void tarjan(int u)
{
dfn[u]=low[u]=++topt;
for(int l=head[u];l!=-;l=edge[l].last)
{
if(visit[l]) continue;
visit[l]=visit[l^]=true;/*找到无向边拆成的另一条边*/
int v=edge[l].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[v],low[u]);
}
else low[u]=min(low[u],dfn[v]);/*多次返祖*/
}
}
void start()
{
for(int i=;i<=n;++i)
if(!dfn[i])
tarjan(i);
for(int i=;i<=n;++i)/*处理缩点以后的图*/
for(int l=head[i];l!=-;l=edge[l].last)
{
int v=edge[l].v;
if(low[i]!=low[v])
cnt[low[v]]++;
/*low[x]!=low[y]说明从low[y]回不到low[x],那么low[x]--low[y]是一条桥,因为tarjan中多次返祖*/
}
for(int i=;i<=n;++i)
if(cnt[i]==) ans++;/*统计度数是1的叶子节点的数目*/
printf("%d\n",(ans+)>>);
}
}G;
int main()
{
int n,m;
scanf("%d%d",&n,&m);
G.init(n,m);
int x,y;
for(int i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
G.add_edge(x,y);
G.add_edge(y,x);
}
G.start();
return ;
}

tarjan算法求桥双连通分量 POJ 3177 Redundant Paths的更多相关文章

  1. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  2. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  3. POJ 3177 Redundant Paths (桥,边双连通分量,有重边)

    题意:给一个无向图,问需要补多少条边才可以让整个图变成[边双连通图],即任意两个点对之间的一条路径全垮掉,这两个点对仍可以通过其他路径而互通. 思路:POJ 3352的升级版,听说这个图会给重边.先看 ...

  4. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  5. POJ 3177 Redundant Paths(边双连通分量)

    [题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...

  6. [学习笔记] Tarjan算法求桥和割点

    在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...

  7. POJ 3177 Redundant Paths (tarjan边双连通分量)

    题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...

  8. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  9. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

随机推荐

  1. 【转载】delete table 和 truncate table 的区别

    使用delete语句删除数据的一般语法格式: delete [from] {table_name.view_name} [where] 将XS表中的所有行数据删除 delete XS 执行完后,发现X ...

  2. 【poj 3080】Blue Jeans(字符串--KMP+暴力枚举+剪枝)

    题意:求n个串的字典序最小的最长公共子串. 解法:枚举第一个串的子串,与剩下的n-1个串KMP匹配,判断是否有这样的公共子串.从大长度开始枚举,找到了就break挺快的.而且KMP的作用就是匹配子串, ...

  3. mysqli连接数据库常见函数

    mysqli_free_result() 返回最后一次查询中使用的自动生成 id,如果是多表插入,返回的是第一个被插入的id. mysqli_query($con,"INSERT INTO ...

  4. Durandal介绍

         Durandal是一个JS框架用于构建客户端single page application(SPAs).它支持MVC,MVP与MVVM前端构架模式.使用RequireJS做为其基本约定层,D ...

  5. spring编程式刷新/重新加载applicationcontext/dispatchservlet(正确版)

    有些时候,尤其是在开发应用框架的时候,由于某些原因无法或者很难重启tomcat或者reload应用,但是配置又需要动态生效,这个时候通常希望通过reload spring applicationcon ...

  6. AngularJS directive 指令相关记录

    .... .directive('scopeDemo',function(){ return{ template: "<div class='panel-body'>Name: ...

  7. ArcGIS10.2下调试10.1的程序

    听说:10.2比10.1好,诚然,安装了10.2打开一看是这样的,以为是下载的版本问题,后来才以现是显示设置的问题. 因为,我使用的两个显示器,屏幕有点大,所以,就改成中等了,不然怎么可截取下面的截图 ...

  8. MYSQL使用正则表达式过滤数据

    一.正则与LIKE的区别 Mysql的正则表达式仅仅使SQL语言的一个子集,可以匹配基本的字符.字符串.例如:select * from wp_posts where post_name REGEXP ...

  9. SharePoint服务器端对象模型 之 访问用户、用户组和权限(Part 1)

    (一)概述 SharePoint权限系统是整个SharePoint体系中一个比较重要的部分,权限系统主要分成两大部分:认证和授权. 认证主要解决的问题是判断登陆者是否合法,以及他究竟是哪一个用户,Sh ...

  10. SharePoint 自定义WebPart之间的连接

    1.创建SharePoint解决方案,添加两个WebPart分别用来发送和接收: 2.发送值的WebPart需要继承自IWebPartField(当然,根据需要还可以选择IWebPartField,I ...