http://poj.org/problem?id=3150

这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的

1 1 0 0 1

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 0 1 1

这是n^3的,可是n<=500,显然tle

我们观察这个n×n的矩阵,发现没一行都是由上一行向右移得到的。

而根据Cij=Aik×Bkj,我们可以发现,其实Bkj==Akj==Ai(j-k)

那么就可以降二维变一维,每一次只要算第一行即可,即Cj=Ak*Bj-k

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const long long getint() { long long r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }
typedef long long matrix[505];
void mul(matrix a, matrix b, matrix c, int lb, int lc, long long md) {
matrix t;
rep(j, lc) {
t[j]=0;
rep(k, lb)
if(j-k>=0) t[j]=(t[j]+a[k]*b[j-k])%md;
else t[j]=(t[j]+a[k]*b[lb+j-k])%md;
}
rep(j, lc) c[j]=t[j];
}
matrix a, b, c;
int main() {
long long n, m, d, k;
cin >> n >> m >> d >> k;
rep(i, n) read(c[i]);
a[0]=b[0]=1;
rep(j, d+1) a[j]=1;
for2(j, n-d, n) a[j]=1;
while(k) {
if(k&1) mul(a, b, b, n, n, m);
mul(a, a, a, n, n, m);
k>>=1;
}
mul(c, b, c, n, n, m);
rep(i, n) printf("%lld ", c[i]);
return 0;
}

Description

A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the automaton of order n are numbered from 1 to n.

The order of the cell is the number of different values it may contain. Usually, values of a cell of order m are considered to be integer numbers from 0 to m − 1.

One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed. In this problem we examine the special kind of cellular automaton — circular cellular automaton of order n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.

A distance between cells i and j in n,m-automaton is defined as min(|ij|, n − |ij|). A d-environment of a cell is the set of cells at a distance not greater than d.

On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.

The following picture shows 1-step of the 5,3-automaton.

The problem is to calculate the state of the n,m-automaton after k d-steps.

Input

The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤ 1 000 000, 0 ≤ d < n2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers from 0 to m − 1 — initial values of the automaton’s cells.

Output

Output the values of the n,m-automaton’s cells after k d-steps.

Sample Input

sample input #1
5 3 1 1
1 2 2 1 2 sample input #2
5 3 1 10
1 2 2 1 2

Sample Output

sample output #1
2 2 2 2 1 sample output #2
2 0 0 2 2

Source

【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)的更多相关文章

  1. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  2. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

  3. POJ 3150 Cellular Automaton --矩阵快速幂及优化

    题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...

  4. POJ 3150 Cellular Automaton(矩阵快速幂)

    Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...

  5. POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)

    A cellular automaton is a collection of cells on a grid of specified shape that evolves through a nu ...

  6. POJ 3150 Cellular Automaton(矩阵乘法+二分)

    题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组 ...

  7. poj 3150 Cellular Automaton

    首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+ ...

  8. POJ 2778 (AC自动机+矩阵乘法)

    POJ 2778 DNA Sequence Problem : 给m个只含有(A,G,C,T)的模式串(m <= 10, len <=10), 询问所有长度为n的只含有(A,G,C,T)的 ...

  9. DNA Sequence POJ - 2778 AC 自动机 矩阵乘法

    定义重载运算的时候一定要将矩阵初始化,因为这个调了一上午...... Code: #include<cstdio> #include<algorithm> #include&l ...

随机推荐

  1. CSS clearfix

    The problem happens when a floated element is within a container box, that element does not automati ...

  2. android获取手机信息大全

    IMEI号,IESI号,手机型号: private void getInfo() { TelephonyManager mTm = (TelephonyManager) getSystemServic ...

  3. Dan计划:重新定义人生的10000个小时

    一. 1985年,芝加哥大学的Benjamin Bloom教授,出版了一本重要著作<如何培养天才>(Developing Talent in Young People). 他研究的是,如何 ...

  4. 【转】如何调试bash脚本

    本文转自:http://coolshell.cn/articles/1379.html Bash 是Linux操作系统的默认Shell脚本.Shell是用来处理操作系统和用户交互的一个程序.Shell ...

  5. Java for LeetCode 172 Factorial Trailing Zeroes

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  6. 20.python笔记之装饰器

    装饰器 装饰器是函数,只不过该函数可以具有特殊的含义,装饰器用来装饰函数或类,使用装饰器可以在函数执行前和执行后添加相应操作. 装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插 ...

  7. C++语法 初始化列表 数组引用

    只能在初始化列表initilizationlist中初始化的有: 1.const修饰的数据成员或者reference参考 2.基类的构造函数 注意,数组不能引用,亦即以下代码是不对的 void fun ...

  8. python基础——迭代

    python基础——迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration). 在Python中,迭代是通过for .. ...

  9. 《Java程序性能优化》学习笔记 JVM和并发优化

    第四章 并行程序优化 1.非阻塞同步避免了基于锁的同步的缺陷,无锁算法没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销.CAS算法:包含3个参数CAS(v,e,n).V表示要更新的变量,E表示 ...

  10. ***阿里云linux 下怎么配置虚拟主机

    最近有个问题,本人在阿里云买了linux服务器,用wordpress做了一个博客网站www.bravetiger.cn,现在想加一个电商系统进去,假设二级域名为:shop.bravetiger.cn, ...