题目链接http://poj.org/problem?id=1155

题目大意:电视台转播节目。对于每个根,其子结点可能是用户,也可能是中转站。但是用户肯定是叶子结点。传到中转站或是用户都要花钱,如果是用户,则还可以收钱。问在不亏本的前提下最多能有多少个用户看到节目。

解题思路

比较麻烦的树形背包。首先cost=1。

花的钱权在边,收的钱权在点,且是叶子结点。所以首先可以对叶子结点进行预处理。

用dp[i][j]表示在i点时传播j个用户(包含自身),则dp[n-m-1~n][1]=每个用户缴费。

这样在dfs的时候就可以专心处理边权问题。两个for循环这么写:

for(f...j...cost)

for(0...k...j)

则转移方程就是dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[t][k]-e[a].w);

这里之所以是f而不是f+1,是因为中转站不是用户,不需要cost。f+=dfs(t)。

对于如何知道在不亏本的情况下的最多用户,在dfs之后,从dp[1][m..0]开始找一个大于0的最大m值。

如果你熟悉传统的树形背包的话,就会发现这里不能每次都使用最大背包容量m循环了,不然会TLE,原因是这题m比较大,每次都从m开始不T就怪了。

所以必须采用这种cost=1时特殊的当前最大容量f。

#include "cstdio"
#include "iostream"
#include "cstring"
using namespace std;
#define maxn 3005
#define inf 0x3f3f3f3f
struct Edge
{
int to,next,w;
}e[maxn];
int leaf[maxn],dp[maxn][maxn],get[maxn],head[maxn];
int n,m,k,v,w,tol;
void addedge(int u,int v,int w)
{
e[tol].to=v;
e[tol].next=head[u];
e[tol].w=w;
head[u]=tol++;
}
int dfs(int root)
{
if(head[root]==-) return ;
int i=root,f=,cost=;
for(int a=head[root];a!=-;a=e[a].next)
{
int t=e[a].to;
f+=dfs(t);
for(int j=f; j>=cost; j--)
for(int k=; k<=j; k++)
dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[t][k]-e[a].w);
}
return f;
}
int main()
{
//freopen("in.txt","r",stdin);
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=;i<=n-m;i++)
{
scanf("%d",&k);
for(int j=;j<=k;j++)
{
scanf("%d%d",&v,&w);
addedge(i,v,w);
}
}
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
dp[i][j]=-inf;
for(int i=n-m+;i<=n;i++) {scanf("%d",&get[i]);dp[i][]=get[i];}
dfs();
for(int i=m;i>=;i--)
{
if(dp[][i]>=)
{
printf("%d\n",i);
break;
}
}
}
13540208 neopenx 1155 Accepted 33704K 157MS C++ 1322B 2014-10-18 00:48:42

POJ 1155 (树形DP+背包+优化)的更多相关文章

  1. POJ 1155 树形DP

    题意:电视台发送信号给很多用户,每个用户有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 转自:http://www.cnblogs.com/andre050 ...

  2. poj 1947(树形DP+背包)

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10663   Accepted: 4891 ...

  3. Ural 1018 (树形DP+背包+优化)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662 题目大意:树枝上间连接着一坨坨苹果(不要在意'坨'),给 ...

  4. Fire (poj 2152 树形dp)

    Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...

  5. URAL_1018 Binary Apple Tree 树形DP+背包

    这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...

  6. 树形dp空间优化(dfn)

    树形dp空间优化 介绍 有时题目会告诉我们n叉树的最大层数,或者给出一个完全n叉树树,直接做树形dp会爆空间时,就可以用这个优化方法. 多数树形dp都是先dfs到子树,再合并到根上,显然当合并到根上时 ...

  7. POJ 1155 树形背包(DP) TELE

    题目链接:  POJ 1155 TELE 分析:  用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理.        dp[cnt][i+j] = max( dp[cnt][i+j ...

  8. Vijos 1180 (树形DP+背包)

    题目链接: https://vijos.org/p/1180 题目大意:选课.只有根课选了才能选子课,给定选课数m, 问最大学分多少. 解题思路: 树形背包.cost=1. 且有个虚根0,取这个虚根也 ...

  9. BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)

    题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前 ...

随机推荐

  1. weblogic <BEA-000438>

    现在创建域并启动服务器, 或许会发现如下提示的错误信息:<Error> <Socket> <BEA-000438> <Unable to load perfo ...

  2. 更改win7开机界面

    按“win+R”组合键,打开运行框,在打开框中输入"regedit”,单击“确定”. 打开注册表编辑器,依次展开注册表里: “HKEY_LOCAL_MACHINE---SOFTWARE--- ...

  3. css选择器集体声明

    <title>静夜思</title><style type="text/css">h1,#two,.red{ color:#ff0000; fo ...

  4. Django对静态文件的处理——部署阶段

    参考:http://blog.makto.me/post/2012-11-09/static-files-in-django-deployment HTML模板中的用法: {% load static ...

  5. iOS 中的Certificate,Provisioning Profile 等在code singing中用到的信息

    注册apple id 有1年多了,这些概念还是模模糊糊的,决定在这里总结一下. 请参阅官方文档 App Distribution Guide code singing的作用如下: Code signi ...

  6. 集群ssh服务和免密码登录的配置

    安装Hadoop之前,由于集群中大量主机进行分布式计算需要相互进行数据通信,服务器之间的连接需要通过ssh来进行,所以要安装ssh服务,默认情况下通过ssh登录服务器需要输入用户名和密码进行连接,如果 ...

  7. Java集合框架中List接口的简单使用

    Java集合框架可以简单的理解为一种放置对象的容器,和数学中的集合概念类似,Java中的集合可以存放一系列对象的引用,也可以看做是数组的提升,Java集合类是一种工具类,只有相同类型的对象引用才可以放 ...

  8. codeforces B. Simple Molecules 解题报告

    题目链接:http://codeforces.com/problemset/problem/344/B 题目意思:这句话是解题的关键: The number of bonds of an atom i ...

  9. poj 1363 Rails 解题报告

    题目链接:http://poj.org/problem?id=1363 题意:有一列火车,车厢编号为1-n,从A方向进站,向B方向出站.现在进站顺序确定,给出一个出站的顺序,判断出站顺序是否合理. 实 ...

  10. ubuntu命令行相关命令使用心得

    一.Ubuntu解压缩zip,tar,tar.gz,tar.bz2 ZIP zip可能是目前使用得最多的文档压缩格式.它最大的优点就是在不同的操作系统平台,比如Linux, Windows以及Mac ...