HDU4862 Jump(放大边权的费用流)
题目大概给一个n×m的格子,每个格子有一个一位数字,格子不能重复经过,最多进行这样的k次行走:每一次选择任意一个格子出发,可以从当前格子走到下面或右边格子,花费能量是曼哈顿距离-1,而如果起点和终点格子数字一样那就能获得那个数字的能量。问能不能走过所有的格子,如果能算出最大的最终能量。
太弱了。。官方标算的构图好难理解,好神的感觉。。而学习了另一种构图方法,也好神:
- 源点拆两点vs、vs'连容量k费用0的边
- 每个格子拆成两点mij、mij'
- vs'向mij连容量1费用0的边,mij'向汇点连容量1费用0的边
- 对于格子mij能到达的mxy连mij'到mxy的容量1费用为消耗能量-能获得的能量的边
- 而每个mij之间mij'连容量1费用-M的边!
这儿的M是一个足够大的值,比最大可能的最终能量大的值,我取1000,这样放大(缩小。。)这条边的费用是为了能尽量去走这条边!
这样最后求出最小费用cost,那么如果-cost/1000不等于n*m那就无解,否则结果就是-cost%1000。
注意这儿的最小费用,不是要最大流条件下的最小费用,可以再加条vs'到汇点容量k费用0的边,或者遇到非负的费用和就停止找增广路。
感觉这种放大边权的技巧太强了。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 222
#define MAXM 222*444
struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int head[MAXN];
int NV,NE,vs,vt; void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
bool vis[MAXN];
int d[MAXN],pre[MAXN];
bool SPFA(){
for(int i=;i<NV;++i){
vis[i]=;
d[i]=INF;
}
vis[vs]=;
d[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int MCMF(){
int res=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
if(cost>=) break;
res+=cost;
}
return res;
}
int main(){
int t,n,m,k,map[][];
scanf("%d",&t);
for(int cse=; cse<=t; ++cse){
scanf("%d%d%d",&n,&m,&k);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j) scanf("%1d",&map[i][j]);
}
vs=n*m*+; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
addEdge(vs,n*m*,k,);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
addEdge(i*m+j,i*m+j+n*m,,-);
addEdge(n*m*,i*m+j,,);
addEdge(i*m+j+n*m,vt,,);
for(int k=i+; k<n; ++k){
int tmp=k-i-;
if(map[i][j]==map[k][j]) tmp-=map[i][j];
addEdge(i*m+j+n*m,k*m+j,,tmp);
}
for(int k=j+; k<m; ++k){
int tmp=k-j-;
if(map[i][j]==map[i][k]) tmp-=map[i][j];
addEdge(i*m+j+n*m,i*m+k,,tmp);
}
}
}
int res=MCMF();
if(-res/!=n*m) printf("Case %d : -1\n",cse);
else printf("Case %d : %d\n",cse,-res%);
}
return ;
}
HDU4862 Jump(放大边权的费用流)的更多相关文章
- hdu4862 2014多校B题/ 费用流(最优情况下用不大于K条路径覆盖)(不同的解法)
题意: 一个数字矩阵,可以出发K次,每次可以从右边或者下面走,要求(在收益最大情况下)覆盖全图,不能则输出-1.(规则:每次跳一步的时候若格子数字相等则获得该数字的能量,每跳一步消耗距离的能量).每个 ...
- Tour HDU - 3488 有向环最小权值覆盖 费用流
http://acm.hdu.edu.cn/showproblem.php?pid=3488 给一个无源汇的,带有边权的有向图 让你找出一个最小的哈密顿回路 可以用KM算法写,但是费用流也行 思路 1 ...
- 二分图带权匹配 KM算法与费用流模型建立
[二分图带权匹配与最佳匹配] 什么是二分图的带权匹配?二分图的带权匹配就是求出一个匹配集合,使得集合中边的权值之和最大或最小.而二分图的最佳匹配则一定为完备匹配,在此基础上,才要求匹配的边权值之和最大 ...
- HDU 4862 Jump 费用流
又是一个看了题解以后还坑了一天的题…… 结果最后发现是抄代码的时候少写了一个负号. 题意: 有一个n*m的网格,其中每个格子上都有0~9的数字.现在你可以玩K次游戏. 一次游戏是这样定义的: 你可以选 ...
- 费用流模板(带权二分图匹配)——hdu1533
/* 带权二分图匹配 用费用流求,增加源点s 和 汇点t */ #include<bits/stdc++.h> using namespace std; #define maxn 1000 ...
- hdu4862 费用流(不错)
题意: 给你一个矩阵,你最多可以选择k条路线,k条路线的起点随意,每次行走的距离随意,但是只能往右或者下走,走过的点不能再走,而且每一步如果a->b,如果a和b的权值s相等那么就可以 ...
- [NOI2012]美食节——费用流(带权二分图匹配)+动态加边
题目描述 小M发现,美食节共有n种不同的菜品.每次点餐,每个同学可以选择其中的一个菜品.总共有m个厨师来制作这些菜品.当所有的同学点餐结束后,菜品的制作任务就会分配给每个厨师.然后每个厨师就会同时开始 ...
- hdu3315 /最大权最佳匹配(最大权下尽量不改变次序)(有权田忌赛马类问题)/费用流
题意:2个人比赛,每场比赛有得分,每场每人派一支圣兽( brute ,字典翻译为畜生,感觉这里不太符╮(╯▽╰)╭),有攻击力和血条...一堆规则... 合理安排,让1号人获得最大分数,并尽量不要改变 ...
- 网络费用流-最小k路径覆盖
多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- 滚动光效shader
Shader "Custom/LightMove" { Properties { _MainTex ("Base (RGB)", 2D) = "whi ...
- Coursera台大机器学习课程笔记10 -- Linear Models for Classification
这一节讲线性模型,先将几种线性模型进行了对比,通过转换误差函数来将linear regression 和logistic regression 用于分类. 比较重要的是这种图,它解释了为何可以用Lin ...
- Ubuntu 16.04 安装 VMware-Workstation-12
以前一直使用 Ubuntu + Virtaulbox ,最近测试了 VMware-Workstation-9,性能超过 Virtaulbox-4.2.x,下面是详细步骤: 1 首先准备一个Ubuntu ...
- 《linux备份与恢复之二》3.19 dump(文件系统备份)
<Linux指令从初学到精通>第3章文件管理,本章介绍了许多常用命令,如cp.ln.chmod.chown.diff.tar.mv等,因为这些都与文件管理相关,在日常的使用中经常用到,因此 ...
- jsp页面之间传参用el表达式获取
jsp页面之间传参用el表达式获取 参数方法:${param.参数名} session方法:${session.变量名}
- Windows下进程间通信及数据共享
进程是装入内存并准备执行的程序,每个进程都有私有的虚拟地址空间,由代码.数据以及它可利用的系统资源(如文件.管道等)组成. 多进程/多线程是Windows操作系统的一个基本特征.Microsoft W ...
- linux tricks 之VA系列函数.
VA函数(variable argument function),参数个数可变函数,又称可变参数函数.C/C++编程中,系统提供给编程人员的va函数很少.*printf()/*scanf()系列函数, ...
- [原]FileHelper-文件操作辅助类
using System; using System.Collections.Generic; using System.IO; using System.Text; namespace Whir.S ...
- java web开发问题集合
前台和后台的交流到底是借助什么?servlet?xml? 我们能感觉到用servlet,但是我们是如何使用servlet的?不是现在web.xml部署后,才能触发吗?所以其实我们是本质是借助XML文件 ...
- 【Android】SlidingMenu属性详解(转)
原文:http://my.eoe.cn/1169143/archive/21892.html SlidingMenu简介:SlidingMenu的是一种比较新的设置界面或配置界面效果,在主界面左滑或者 ...