【模板】多项式乘法 NTT
Code:
#include<bits/stdc++.h>
#define maxn 4000002
#define mod 998244353
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll qpow(ll base,ll k)
{
ll tmp=1;
while(k)
{
if(k&1) tmp=tmp*base%mod;
base=base*base%mod;
k>>=1;
}
return tmp;
}
void NTT(ll *a,int n,int flag)
{
for(int i=0,k=0;i<n;++i)
{
if(i>k) swap(a[i],a[k]);
for(int j=(n>>1);(k^=j)<j;j>>=1);
}
for(int i=1;i<n;i<<=1)
{
ll wn=qpow(3, (mod-1)/(i<<1));
if(flag==-1) wn=qpow(wn, mod-2);
for(int j=0;j<n;j+=(i<<1))
{
ll w=1,x,y;
for(int k=0;k<i;++k)
{
x=a[j+k], y=1ll*w*a[j+k+i]%mod;
a[j+k]=(1ll*x+y)%mod, a[j+k+i]=(1ll*x-y+mod)%mod;
w*=wn, w%=mod;
}
}
}
if(flag==-1)
{
ll rev=qpow(n, mod-2);
for(int i=0;i<n;++i) a[i]=(1ll*a[i]*rev)%mod;
}
}
ll A[maxn], B[maxn];
int main()
{
// setIO("input");
int n,m,len;
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i) scanf("%lld",&A[i]);
for(int i=0;i<=m;++i) scanf("%lld",&B[i]);
for(len=1;len<(n+m+1);len<<=1);
NTT(A,len,1), NTT(B,len,1);
for(int i=0;i<len;++i) A[i]=(1ll*A[i]*B[i])%mod;
NTT(A,len,-1);
for(int i=0;i<(n+m+1);++i) printf("%lld ",A[i]);
return 0;
}
【模板】多项式乘法 NTT的更多相关文章
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3803 【模板】多项式乘法 [NTT]
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
随机推荐
- IE8不支持响应式设计解决方法
下载并引入 respond.js 即可 为了针对IE8应用这段脚本,需要针对IE8的条件注释 <!--[if lt IE 9]> --- <! [endif]--> 为了不让并 ...
- uni-app 自定义扫码界面
二维码扫描,已经成为当下一款应用不可或缺,同时也是用户习以为常的功能了.uni-app 为我们提供了扫码 API ,直接调用即可. 需求场景 在实际开发中,平台提供的默认扫码界面,并不能满足一些自定义 ...
- OracleRef游标
提到个思考:怎样让游标作为参数传递? 解决这个问题就需要用到 REF Cursor . 1,什么是 REF游标? 动态关联结果集的临时对象.即在运行的时候动态决定执行查询. 2,REF 游标有什 ...
- 记一次redis-cluster的切换
# redis-cli -h 10.5.8.18 -c -p 8001 cluster nodes|grep master 6d2f817064a10631648f24f450a37237b3d53f ...
- 一些css布局
# css布局 #---bootstrap 详情请看官方文档---首先要按照相应的官方规范引入相应的css js fonts等 container相当于一个容器 一般设置一个 接下来设置行 用ro ...
- Android开发进度01
1,今日:目标:完成eclipse中Android sdk和ADT的创建,下载tools工具,创建Android虚拟机 2,昨天:无 3,收获:Android sdk manager需要下载的东西:学 ...
- php 魔术方法和魔术常量
魔术方法:PHP把类中所有以__(两个下划线)开头的方法当成魔术方法,一般建议用户不要将自定义的方法前面加上__作为前缀.魔术方法: 1. __construct() 类的默认构造方法,如果__con ...
- PatentTips - Cross-domain data transfer using deferred page remapping
BACKGROUND OF THE INVENTION The present invention relates to data transfer across domains, and more ...
- Jquery-ajax错误分析
当我把cshtml中的js代码移出到js文件中,将js代码作为文件引入cshtml时,出现了下面的这样的错误 网上的不少人说是通过在\(.ajax参数中加上async:true解决的,但\).ajax ...
- Mysql数据库事务的隔离级别和锁的实现原理分析
Mysql数据库事务的隔离级别和锁的实现原理分析 找到大神了:http://blog.csdn.net/tangkund3218/article/details/51753243 InnoDB使用MV ...