素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计
$\DeclareMathOperator{\lcm}{lcm}$
本文的方法来源于GTM 190:"Problems in Algebraic Number Theory",给出了$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的证明。以下使用的$p$隐含了$p$是素数的条件。
1. $\pi(x)\ge \frac{x\log{2}}{2\log{x}}$在$x\ge 6$成立
证明:(1)定义$\psi(x)=\sum_{p^\alpha \le x}\log{p}$,也就是说,小于$x$最大素数的幂乘积再取$\log$.那么我们可以知道
$$e^{\psi(n)}=\lcm(1,2,\cdots,n)$$
同时,利用二次函数性质,我们知道在$0\le x\le 1$时候,$x(1-x)\le \frac{1}4$,那么有$$\int_0^1 x^n(1-x)^ndx\le \frac{1}{4}$$
但是我们同样知道$\int_0^1 x^n(1-x)^ndx>0$,且展开多项式,最大的次数为$2n$,不定积分就产生了$1/1,1/2,\cdots,1/(2n+1)$这些分母。也就是$$ e^{\psi(2n+1)}\int_0^1 x^n(1-x)^ndx\ge 1 \ge 4^n \int_0^1 x^n(1-x)^ndx$$
从而很容易就知道$\psi(2n+1)\ge 2n\log{2}$。
(2)由于$\psi(2n)\ge \psi(2n-1) \ge (2n-2)\log{2}\ge \frac{x}{2} \log{2}$对于任意$2n\ge 6$成立,与此同时,$2n+1 \ge n/2$,那么我们知道
$$\pi(x)\ge \sum_{p\le x}= \sum_{p^{\alpha}\le x}\log_x(p)=\frac{\psi(x)}{\log{x}}\ge \frac{x\log{2}}{2\log{x}}$$
2.$\pi(x)\le \frac{9x\log{2}}{\log{x}}$在$x\ge 2$成立
证明:注意到$\prod_{n<p\le 2n}p|\binom{2n}{n}$,这是由于当$p>n$的时候,$(p,n!)=1$,那么我们就知道
$$\prod_{k=1}^{2n} k\le \prod_{k=1}^n (2k)(2k+0)=2^{2n}(n!)^2 \Rightarrow\sum_{n<p\le 2n}\log{p}\le 2n\log{2}$$
定义$\theta(n)=\sum_{p\le n}\log{p}$,那么$\theta(2n)-\theta(n)\le 2n\log{2}$,利用数学归纳法知道$\theta(2^r)\le 2^{r+1}\log{2}$
对于任意$x$,选择$r$,使得$2^r<x\le 2^{r+1}$,所以$\theta(x)\le 2^{r+1} \log{2} \le 4x\log{2}$,特别地,就有$\theta(x)-\theta(\sqrt{x})\le 4x\log{2}$.我们考虑
$$\pi(x)-\pi(\sqrt{x})\le \sum_{\sqrt{x}< p \le}\log_{\sqrt{x}}{p}=\frac{1}{\log{\sqrt{x}}}(\theta(x)-\theta(\sqrt{x}))\le\frac{8x\log{2}}{\log{x}}$$
那么根据这个结论就知道,$$\pi(x)\le \frac{8x\log{2}}{\log{x}}+\pi(\sqrt{x})\le \frac{8x\log{2}}{\log{x}}+\sqrt{x} \le \frac{9x\log{2}}{\log{x}}$$
小结
1.我们可以看出,主要是通过$\pi(x)$与$\log_x{p}$或者$\log_{\sqrt{x}}{p}$和的对比进行估计的,这样的函数可以很松地估计$\pi(x)$,我们可以把这个证明变得更紧一些。
2.但是这样的证明太技巧性了,我们对素数定理更深刻的理解并没有得到体现,陶哲轩曾在他的讲座“Structure And Randomness in the Prime Numbers”(附上报告的slide)曾说过这样的话:
"There are more elementary ways to prove the prime number theorem, but those proofs are longer and also not so intuitive. In fact, the elementary proof are not considered anyway as elegant and informative as the much more modern proof..."
翻译过来是“尽管素数定理有更加初等的证明方法,但是这些证明都很长,而且没有(如同前面他讲过的一个傅立叶分析的证明一样)那么直观。事实上,初等的证明完全没有和现代证明相提并论的优美性与知识性”。这里是陶哲轩提到的证明

这个证明我也许会在以后提到。言归正传,我们现在初等证明只是一个比较tricky的东西,利用现代的观点进行理解才是我们的目标。
素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计的更多相关文章
- NOIp 基础数论知识点总结
推荐阅读 NOIp 数学知识点总结: https://www.cnblogs.com/greyqz/p/maths.html Basic 常用素数表:https://www.cnblogs.com/g ...
- Ⅶ. Policy Gradient Methods
Dictum: Life is just a series of trying to make up your mind. -- T. Fuller 不同于近似价值函数并以此计算确定性的策略的基于价 ...
- 强化学习-学习笔记4 | Actor-Critic
Actor-Critic 是价值学习和策略学习的结合.Actor 是策略网络,用来控制agent运动,可以看做是运动员.Critic 是价值网络,用来给动作打分,像是裁判. 4. Actor-Crit ...
- 计算广义积分$$\int_0^{+\infty}\cos x^p {\rm d}x,\int_0^{+\infty}\sin x^p {\rm d}x, p>1$$
${\bf 解:}$ 在角状域$G=\{z\in\mathbb{C}|0<{\rm Arg}z<\frac{\pi}{2p}\}$上引入辅助函数$e^{iz^p}$, 其中$z^p=|z| ...
- MT【292】任意存在求最值
已知向量$\textbf{a},\textbf{b}$满足:$|\textbf{a}|=|\textbf{b}|=1,\textbf{a}\cdot\textbf{b}=\dfrac{1}{2},\t ...
- x = cos x 的解析形式
x = cos x 的解析形式 玩计算器的发现 大家都玩过计算器吧, 不知注意到没有. 输入任意数, 然后不断按最后总会输出. 什么, 你说明明记得是:? 哦, 因为你用了角度制. 这一系列操作等价于 ...
- BLDC有感FOC算法理论及其STM32软硬件实现
位置传感器:旋转编码器 MCU:STM32F405RGT6 功率MOS驱动芯片:DRV8301 全文均假设在无弱磁控制的情况下 FOC算法理论 首先,我们要知道FO ...
- [CSP-S模拟测试]:party?(霍尔定理+最小割+树链剖分)
题目描述 $Treeland$国有$n$座城市,其中$1$号城市是首都,这些城市被一些单向高铁线路相连,对于城市$i\neq 1$,有一条线路从$i$到$p_i(p_i<i)$.每条线路都是一样 ...
- 扩展HT for Web之HTML5表格组件的Renderer和Editor
在HT for Web提供了一下几种常用的Editor,分别是: slider:拉条 color picker:颜色选择器 enum:枚举类型 boolean:真假编辑器 string:普通的文本编辑 ...
随机推荐
- 前端的标配:npm是什么及其安装(含cnpm)
前端的标配:npm是什么及其安装 一:npm是什么及其来源 参考来源:npm是干什么的 总结:不需要去相关的网站下载依赖,用一个工具把这些依赖集中起来管理 NPM 的思路大概是这样的: 1)买个服务器 ...
- 前端通过canvas实现图片压缩
在一次的项目中,需要用户上传图片,目前市场随便一个手机拍出来的照片都是好几兆,直接上传特别占用带宽,影响用户体验,所以要求对用户上传图片进行压缩后再上传:那么前端怎么实现这个功能呢? 亲测可将4M图片 ...
- js如何实现php的in_array()
var arr = [ 4, "Pete", 8, "John" ]; jQuery.inArray("John", arr); //3 j ...
- 利用Python对文件进行批量重命名
最近几天工作的内容是对40个项目进行考核,每个项目都需要一个考核评分表,已经有了项目的列表. 如果用常规的方法,需要复制40个文件,并逐个修改,不光工作量大,也容易出错,后期修改也不方便. 于是想到了 ...
- linux内核(五)虚拟文件系统
虚拟文件系统(VFS)是linux内核和具体I/O设备之间的封装的一层共通访问接口,通过这层接口,linux内核可以以同一的方式访问各种I/O设备. 虚拟文件系统本身是linux内核的一部分,是纯软件 ...
- spring boot学习(转)
玩转Spring Boot 前言 首先在这里对Spring Boot做个简单的介绍,对Spring Boot也关注了挺久了,Spring Boot是由Pivotal团队提供的全新框架, ...
- Objective-C 和 Core Foundation 对象相互转换
iOS同意Objective-C 和 Core Foundation 对象之间能够轻松的转换: CFStringRef aCFString = (CFStringRef)aNSString; NSSt ...
- MySQL事件调度器Event Scheduler
我们都知道windows的计划任务和linux的crontab都是用来实现一些周期性的任务和固定时间须要运行的任务. 在mysql5.1之前我们完毕数据库的周期性操作都必须借助这些操作系统实现. 在m ...
- Post请求方式长度參数过长导致參数为空
Post提交方式本身对于參数的长度没有限制,HTTP协议也没有限制. 可是今天在做一个web项目的时候碰到一个问题,当要提交的表单内容达到一定大小时,发现后台代码接收到的參数为空. 查询了一下.发现是 ...
- HDOJ 5299 Circles Game 圆嵌套+树上SG
将全部的圆化成树,然后就能够转化成树上的删边博弈问题.... Circles Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...