$\DeclareMathOperator{\lcm}{lcm}$

本文的方法来源于GTM 190:"Problems in Algebraic Number Theory",给出了$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的证明。以下使用的$p$隐含了$p$是素数的条件。

1. $\pi(x)\ge \frac{x\log{2}}{2\log{x}}$在$x\ge 6$成立

证明:(1)定义$\psi(x)=\sum_{p^\alpha \le x}\log{p}$,也就是说,小于$x$最大素数的幂乘积再取$\log$.那么我们可以知道

$$e^{\psi(n)}=\lcm(1,2,\cdots,n)$$

同时,利用二次函数性质,我们知道在$0\le x\le 1$时候,$x(1-x)\le \frac{1}4$,那么有$$\int_0^1 x^n(1-x)^ndx\le \frac{1}{4}$$

但是我们同样知道$\int_0^1 x^n(1-x)^ndx>0$,且展开多项式,最大的次数为$2n$,不定积分就产生了$1/1,1/2,\cdots,1/(2n+1)$这些分母。也就是$$ e^{\psi(2n+1)}\int_0^1 x^n(1-x)^ndx\ge 1 \ge 4^n \int_0^1 x^n(1-x)^ndx$$

从而很容易就知道$\psi(2n+1)\ge 2n\log{2}$。

(2)由于$\psi(2n)\ge \psi(2n-1) \ge (2n-2)\log{2}\ge \frac{x}{2} \log{2}$对于任意$2n\ge 6$成立,与此同时,$2n+1 \ge n/2$,那么我们知道

$$\pi(x)\ge \sum_{p\le x}= \sum_{p^{\alpha}\le x}\log_x(p)=\frac{\psi(x)}{\log{x}}\ge \frac{x\log{2}}{2\log{x}}$$

2.$\pi(x)\le \frac{9x\log{2}}{\log{x}}$在$x\ge 2$成立

证明:注意到$\prod_{n<p\le 2n}p|\binom{2n}{n}$,这是由于当$p>n$的时候,$(p,n!)=1$,那么我们就知道

$$\prod_{k=1}^{2n} k\le \prod_{k=1}^n (2k)(2k+0)=2^{2n}(n!)^2 \Rightarrow\sum_{n<p\le 2n}\log{p}\le 2n\log{2}$$

定义$\theta(n)=\sum_{p\le n}\log{p}$,那么$\theta(2n)-\theta(n)\le 2n\log{2}$,利用数学归纳法知道$\theta(2^r)\le 2^{r+1}\log{2}$

对于任意$x$,选择$r$,使得$2^r<x\le 2^{r+1}$,所以$\theta(x)\le 2^{r+1} \log{2} \le 4x\log{2}$,特别地,就有$\theta(x)-\theta(\sqrt{x})\le 4x\log{2}$.我们考虑

$$\pi(x)-\pi(\sqrt{x})\le \sum_{\sqrt{x}< p \le}\log_{\sqrt{x}}{p}=\frac{1}{\log{\sqrt{x}}}(\theta(x)-\theta(\sqrt{x}))\le\frac{8x\log{2}}{\log{x}}$$

那么根据这个结论就知道,$$\pi(x)\le \frac{8x\log{2}}{\log{x}}+\pi(\sqrt{x})\le \frac{8x\log{2}}{\log{x}}+\sqrt{x} \le \frac{9x\log{2}}{\log{x}}$$

小结

1.我们可以看出,主要是通过$\pi(x)$与$\log_x{p}$或者$\log_{\sqrt{x}}{p}$和的对比进行估计的,这样的函数可以很松地估计$\pi(x)$,我们可以把这个证明变得更紧一些。

2.但是这样的证明太技巧性了,我们对素数定理更深刻的理解并没有得到体现,陶哲轩曾在他的讲座“Structure And Randomness in the Prime Numbers”(附上报告的slide)曾说过这样的话:

"There are more elementary ways to prove the prime number theorem, but those proofs are longer and also not so intuitive. In fact, the elementary proof are not considered anyway as elegant and informative as the much more modern proof..."

翻译过来是“尽管素数定理有更加初等的证明方法,但是这些证明都很长,而且没有(如同前面他讲过的一个傅立叶分析的证明一样)那么直观。事实上,初等的证明完全没有和现代证明相提并论的优美性与知识性”。这里是陶哲轩提到的证明

这个证明我也许会在以后提到。言归正传,我们现在初等证明只是一个比较tricky的东西,利用现代的观点进行理解才是我们的目标。

素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计的更多相关文章

  1. NOIp 基础数论知识点总结

    推荐阅读 NOIp 数学知识点总结: https://www.cnblogs.com/greyqz/p/maths.html Basic 常用素数表:https://www.cnblogs.com/g ...

  2. Ⅶ. Policy Gradient Methods

    Dictum:  Life is just a series of trying to make up your mind. -- T. Fuller 不同于近似价值函数并以此计算确定性的策略的基于价 ...

  3. 强化学习-学习笔记4 | Actor-Critic

    Actor-Critic 是价值学习和策略学习的结合.Actor 是策略网络,用来控制agent运动,可以看做是运动员.Critic 是价值网络,用来给动作打分,像是裁判. 4. Actor-Crit ...

  4. 计算广义积分$$\int_0^{+\infty}\cos x^p {\rm d}x,\int_0^{+\infty}\sin x^p {\rm d}x, p>1$$

    ${\bf 解:}$ 在角状域$G=\{z\in\mathbb{C}|0<{\rm Arg}z<\frac{\pi}{2p}\}$上引入辅助函数$e^{iz^p}$, 其中$z^p=|z| ...

  5. MT【292】任意存在求最值

    已知向量$\textbf{a},\textbf{b}$满足:$|\textbf{a}|=|\textbf{b}|=1,\textbf{a}\cdot\textbf{b}=\dfrac{1}{2},\t ...

  6. x = cos x 的解析形式

    x = cos x 的解析形式 玩计算器的发现 大家都玩过计算器吧, 不知注意到没有. 输入任意数, 然后不断按最后总会输出. 什么, 你说明明记得是:? 哦, 因为你用了角度制. 这一系列操作等价于 ...

  7. BLDC有感FOC算法理论及其STM32软硬件实现

    位置传感器:旋转编码器          MCU:STM32F405RGT6          功率MOS驱动芯片:DRV8301 全文均假设在无弱磁控制的情况下 FOC算法理论 首先,我们要知道FO ...

  8. [CSP-S模拟测试]:party?(霍尔定理+最小割+树链剖分)

    题目描述 $Treeland$国有$n$座城市,其中$1$号城市是首都,这些城市被一些单向高铁线路相连,对于城市$i\neq 1$,有一条线路从$i$到$p_i(p_i<i)$.每条线路都是一样 ...

  9. 扩展HT for Web之HTML5表格组件的Renderer和Editor

    在HT for Web提供了一下几种常用的Editor,分别是: slider:拉条 color picker:颜色选择器 enum:枚举类型 boolean:真假编辑器 string:普通的文本编辑 ...

随机推荐

  1. (fields.E304) Reverse accessor for 'UserProfile.groups' clashes with reverse accessor for 'User.groups'.

    创建数据库models.py,在进行数据迁移时抛出一下异常: E:\Project\GuoJia>python manage.py makemigrations SystemCheckError ...

  2. css font-family 字体组

    介绍图片来自: http://www.runoob.com/cssref/css-websafe-fonts.html

  3. 51nod 1576 Tree and permutation(树的重心+dfn序)

    乍一看我不会. 先不考虑加点. 先考虑没有那个除\(2\). 考虑每一条边的贡献,假设某一条边把这棵树分成大小为x,y的两个部分. 那么这条边最多可以被使用\(min(x,y)*2\)次(因为有进有出 ...

  4. Android S5PV210 fimc驱动分析 - fimc_capture.c

    fimc_capture.c在FIMC系统中的位置,网上偷来的一幅图片 http://blog.csdn.net/kickxxx/article/details/7733482 43 static c ...

  5. django-9-请求与响应

    写在表单下面{% csrf_token %} <<<文件上传>>>settings.py UPLOAD_ROOT = os.paht.join(BASE_DIR, ...

  6. 3.如何构建Cython代码

    一.与Python不同的是,Cython代码需要进行编译.发生两个阶段 将一个.pyx文件用Cython编译成一个.c文件中,包括Python扩展模块代码 将.c文件使用C编译器编译成.so文件(在w ...

  7. 《你又怎么了我错了行了吧》【Beta】Scrum Meeting 2

    第二天 日期:2019/6/25 前言: 第2次会议在女生宿舍召开 确认编码阶段已经完成,继续测试项目 1.1 今日完成任务情况以及明日任务安排 姓名 当前阶段任务 下一阶段任务 刘 佳 完善了未开发 ...

  8. angular-输入验证

    $dirty 表单有填写记录 $valid 字段内容合法的 $invalid 字段内容是非法的 $pristine 表单没有填写记录 客户端的验证不能确保用户输入数据的安全,所以服务端的数据验证也是必 ...

  9. java web 服务器端处理json格式参数

    前面我们说了传递参数的两种访书,第一是key-value形式,第二是json格式,对于第一种我们在服务器端直接使用 request.getParameter("key");就能获取 ...

  10. Android开发之视图动画基础

    Android的animation由四种类型组成 XML中  alpha 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动画效果 rotate 画面转移旋转 ...