$\DeclareMathOperator{\lcm}{lcm}$

本文的方法来源于GTM 190:"Problems in Algebraic Number Theory",给出了$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的证明。以下使用的$p$隐含了$p$是素数的条件。

1. $\pi(x)\ge \frac{x\log{2}}{2\log{x}}$在$x\ge 6$成立

证明:(1)定义$\psi(x)=\sum_{p^\alpha \le x}\log{p}$,也就是说,小于$x$最大素数的幂乘积再取$\log$.那么我们可以知道

$$e^{\psi(n)}=\lcm(1,2,\cdots,n)$$

同时,利用二次函数性质,我们知道在$0\le x\le 1$时候,$x(1-x)\le \frac{1}4$,那么有$$\int_0^1 x^n(1-x)^ndx\le \frac{1}{4}$$

但是我们同样知道$\int_0^1 x^n(1-x)^ndx>0$,且展开多项式,最大的次数为$2n$,不定积分就产生了$1/1,1/2,\cdots,1/(2n+1)$这些分母。也就是$$ e^{\psi(2n+1)}\int_0^1 x^n(1-x)^ndx\ge 1 \ge 4^n \int_0^1 x^n(1-x)^ndx$$

从而很容易就知道$\psi(2n+1)\ge 2n\log{2}$。

(2)由于$\psi(2n)\ge \psi(2n-1) \ge (2n-2)\log{2}\ge \frac{x}{2} \log{2}$对于任意$2n\ge 6$成立,与此同时,$2n+1 \ge n/2$,那么我们知道

$$\pi(x)\ge \sum_{p\le x}= \sum_{p^{\alpha}\le x}\log_x(p)=\frac{\psi(x)}{\log{x}}\ge \frac{x\log{2}}{2\log{x}}$$

2.$\pi(x)\le \frac{9x\log{2}}{\log{x}}$在$x\ge 2$成立

证明:注意到$\prod_{n<p\le 2n}p|\binom{2n}{n}$,这是由于当$p>n$的时候,$(p,n!)=1$,那么我们就知道

$$\prod_{k=1}^{2n} k\le \prod_{k=1}^n (2k)(2k+0)=2^{2n}(n!)^2 \Rightarrow\sum_{n<p\le 2n}\log{p}\le 2n\log{2}$$

定义$\theta(n)=\sum_{p\le n}\log{p}$,那么$\theta(2n)-\theta(n)\le 2n\log{2}$,利用数学归纳法知道$\theta(2^r)\le 2^{r+1}\log{2}$

对于任意$x$,选择$r$,使得$2^r<x\le 2^{r+1}$,所以$\theta(x)\le 2^{r+1} \log{2} \le 4x\log{2}$,特别地,就有$\theta(x)-\theta(\sqrt{x})\le 4x\log{2}$.我们考虑

$$\pi(x)-\pi(\sqrt{x})\le \sum_{\sqrt{x}< p \le}\log_{\sqrt{x}}{p}=\frac{1}{\log{\sqrt{x}}}(\theta(x)-\theta(\sqrt{x}))\le\frac{8x\log{2}}{\log{x}}$$

那么根据这个结论就知道,$$\pi(x)\le \frac{8x\log{2}}{\log{x}}+\pi(\sqrt{x})\le \frac{8x\log{2}}{\log{x}}+\sqrt{x} \le \frac{9x\log{2}}{\log{x}}$$

小结

1.我们可以看出,主要是通过$\pi(x)$与$\log_x{p}$或者$\log_{\sqrt{x}}{p}$和的对比进行估计的,这样的函数可以很松地估计$\pi(x)$,我们可以把这个证明变得更紧一些。

2.但是这样的证明太技巧性了,我们对素数定理更深刻的理解并没有得到体现,陶哲轩曾在他的讲座“Structure And Randomness in the Prime Numbers”(附上报告的slide)曾说过这样的话:

"There are more elementary ways to prove the prime number theorem, but those proofs are longer and also not so intuitive. In fact, the elementary proof are not considered anyway as elegant and informative as the much more modern proof..."

翻译过来是“尽管素数定理有更加初等的证明方法,但是这些证明都很长,而且没有(如同前面他讲过的一个傅立叶分析的证明一样)那么直观。事实上,初等的证明完全没有和现代证明相提并论的优美性与知识性”。这里是陶哲轩提到的证明

这个证明我也许会在以后提到。言归正传,我们现在初等证明只是一个比较tricky的东西,利用现代的观点进行理解才是我们的目标。

素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计的更多相关文章

  1. NOIp 基础数论知识点总结

    推荐阅读 NOIp 数学知识点总结: https://www.cnblogs.com/greyqz/p/maths.html Basic 常用素数表:https://www.cnblogs.com/g ...

  2. Ⅶ. Policy Gradient Methods

    Dictum:  Life is just a series of trying to make up your mind. -- T. Fuller 不同于近似价值函数并以此计算确定性的策略的基于价 ...

  3. 强化学习-学习笔记4 | Actor-Critic

    Actor-Critic 是价值学习和策略学习的结合.Actor 是策略网络,用来控制agent运动,可以看做是运动员.Critic 是价值网络,用来给动作打分,像是裁判. 4. Actor-Crit ...

  4. 计算广义积分$$\int_0^{+\infty}\cos x^p {\rm d}x,\int_0^{+\infty}\sin x^p {\rm d}x, p>1$$

    ${\bf 解:}$ 在角状域$G=\{z\in\mathbb{C}|0<{\rm Arg}z<\frac{\pi}{2p}\}$上引入辅助函数$e^{iz^p}$, 其中$z^p=|z| ...

  5. MT【292】任意存在求最值

    已知向量$\textbf{a},\textbf{b}$满足:$|\textbf{a}|=|\textbf{b}|=1,\textbf{a}\cdot\textbf{b}=\dfrac{1}{2},\t ...

  6. x = cos x 的解析形式

    x = cos x 的解析形式 玩计算器的发现 大家都玩过计算器吧, 不知注意到没有. 输入任意数, 然后不断按最后总会输出. 什么, 你说明明记得是:? 哦, 因为你用了角度制. 这一系列操作等价于 ...

  7. BLDC有感FOC算法理论及其STM32软硬件实现

    位置传感器:旋转编码器          MCU:STM32F405RGT6          功率MOS驱动芯片:DRV8301 全文均假设在无弱磁控制的情况下 FOC算法理论 首先,我们要知道FO ...

  8. [CSP-S模拟测试]:party?(霍尔定理+最小割+树链剖分)

    题目描述 $Treeland$国有$n$座城市,其中$1$号城市是首都,这些城市被一些单向高铁线路相连,对于城市$i\neq 1$,有一条线路从$i$到$p_i(p_i<i)$.每条线路都是一样 ...

  9. 扩展HT for Web之HTML5表格组件的Renderer和Editor

    在HT for Web提供了一下几种常用的Editor,分别是: slider:拉条 color picker:颜色选择器 enum:枚举类型 boolean:真假编辑器 string:普通的文本编辑 ...

随机推荐

  1. 使用面向对象技术创建高级 Web 应用程序

    作者: 出处: 使用面向对象技术创建高级 Web 应用程序 来源:开源中国社区 作者:oschina 最近,我面试了一位具有5年Web应用开发经验的软件开发人员.她有4年半的JavaScript编程经 ...

  2. ELK搭建和部署-----(上半部分)

    本实验基于centos7安装部署操作步骤如下: 1.首先准备两台centos7系统,IP地址自行定义. 2.先在服务器上安装时间同步中间件为chronyc 3.并启动命令为systemctl star ...

  3. db2 -- 存储过程01

    接下来项目在技能可能偏向数据库方面,补习下. 学习写第一个db2在存储过程,记录下. ---- stored procedures code CREATE OR REPLACE PROCEDURE & ...

  4. nmcli

    [root@web01 ~]# nmcli device status DEVICE TYPE STATE CONNECTION eth0 ethernet connected eth0 lo loo ...

  5. ansible 主机清单 /etc/ansible/hosts

    主机清单 [webservers] ansible01 ansible02 ansible03 ansible04 [root@ftp:/root] > ansible webservers - ...

  6. 线性回归(regression)

    简介 回归分析只涉及到两个变量的,称一元回归分析.一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y:估计出的变量,称自变量,设为X. 回归分析就是要找出 ...

  7. AT1145 ホリドッグ

    洛谷的题解区里竟然没有O(1)做法详解-- 题面就是要判断\(1+2+\dots+n\)是不是素数 很容易让人想到上面的式子事实上等于\(n(n+1)/2\) 根据质数的定义,质数只能被1和自身整除 ...

  8. C# .net IDE Rider入门

    话说史上最强IDE Visual Studio 所向披靡数十载尚无敌手,现在Intellij带着统一IDE界的目标来挑战VS的霸主地位.了解Rider后发现,哎哟亮点多多,还不错哦! Rider是一款 ...

  9. Java代码实现MySQL数据库的备份与还原

    通常在MySQL数据库的备份和恢复的时候,多是采用在cmd中执行mysql命令来实现. 例如: mysqldump -h127.0.0.1 -uroot -ppass test > d:/tes ...

  10. MyBatis学习总结(3)——优化MyBatis配置文件中的配置

    一.连接数据库的配置单独放在一个properties文件中 之前,我们是直接将数据库的连接配置信息写在了MyBatis的conf.xml文件中,如下: <?xml version="1 ...