hdu3360National Treasures (最大匹配,拆点法)
National Treasures
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1038 Accepted Submission(s): 364
additional guards to stay in the great hall and keep an eye on the ancient artifacts. The museum would like to hire the minimum number of additional guards so that the great hall is secured.
The great hall is represented as a two dimensional grid of R × C cells. Some cells are already occupied with the museum’s guards. All remaining cells are occupied by artifacts of different types (statues, sculptures, . . . etc.) which can be replaced by new
hired guards. For each artifact, few other cells in the hall are identified as critical points of the artifact depending on the artifact value, type of vault it is kept inside, and few other factors. In other words, if this artifact is going to stay in the
hall then all of its critical points must have guards standing on them. A guard standing in a critical position of multiple artifacts can keep an eye on them all. A guard, however,
can not stand in a cell which contains an artifact (instead, you may remove the artifact to allow the guard to stay there). Also you can not remove an artifact and leave the space free (you can only replace an artifact with a new hired guard).
Surveying all the artifacts in the great hall you figured out that the critical points of any artifact (marked by a


Accordingly, the type of an artifact can be specified as a non-negative integer where the i-th bit is 1 only if critical point number i from the picture above is a critical point of that artifact. For example an artifact of type 595 (in binary 1001010011) can
be pictured as shown in the figure below. Note that bits are numbered from right to left (the right-most bit is bit number 1.) If a critical point of an artifact lies outside the hall grid then it is considered secure.

You are given the layout of the great hall and are asked to find the minimum number of additional guards to hire such that all remaining artifacts are secured.
The first line specifies two integers (1<= R,C <= 50) which are the dimensions of the museum hall. The next R lines contain C integers separated by one or more spaces. The j-th integer of the i-th row is -1 if cell (i, j) already contains one of the museum’s
guards, otherwise it contains an integer (0 <= T <= 212) representing the type of the artifact in that cell.
The last line of the input file has two zeros.
k. G
Where k is the test case number (starting at one,) and G is the minimum number of additional guards to hire such that all remaining artifacts are secured.
1 3
512 -1 2048
2 3
512 2560 2048
512 2560 2048
0 0
1. 0
2. 2HintThe picture below shows the solution of the second test case where the two artifacts in the middle are replaced by guards.
![]()
#include<stdio.h>
#include<vector>
#include<iostream>
using namespace std;
int match[2505],vist[2505];
vector<int>map[2505];
int find(int i)
{
for(int j=0;j<map[i].size();j++)
if(!vist[map[i][j]])
{
vist[map[i][j]]=1;
if(match[map[i][j]]==-1||find(match[map[i][j]]))
{
match[map[i][j]]=i; return 1;
}
}
return 0;
}
int main()
{
int dir[12][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2,-1,0,0,1,1,0,0,-1};
int n,m,mp[55][55],b_w[55][55],bn,wn,k=0;
while(scanf("%d%d",&n,&m)>0&&n+m!=0)
{
for(int i=0;i<n*m;i++)
{
map[i].clear(),match[i]=-1;
} for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
scanf("%d",&mp[i][j]);
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
if(mp[i][j]!=-1)
{
int ti,tj;
for(int e=0;e<12;e++)
if(mp[i][j]&(1<<e))
{
ti=i+dir[e][0]; tj=j+dir[e][1];
if(ti>=0&&ti<n&&tj>=0&&tj<m&&mp[ti][tj]!=-1)
{
map[ti*m+tj].push_back(i*m+j);
map[i*m+j].push_back(ti*m+tj);
}
}
}
int ans=0;
for(int i=0;i<n*m;i++)
{
for(int j=0;j<n*m;j++)
vist[j]=0;
ans+=find(i);
}
printf("%d. %d\n",++k,ans/2);
}
}
hdu3360National Treasures (最大匹配,拆点法)的更多相关文章
- UVA 1658 海军上将(拆点法+最小费用限制流)
海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...
- UVa 1658 (拆点法 最小费用流) Admiral
题意: 给出一个有向带权图,求从起点到终点的两条不相交路径使得权值和最小. 分析: 第一次听到“拆点法”这个名词. 把除起点和终点以外的点拆成两个点i和i',然后在这两点之间连一条容量为1,费用为0的 ...
- poj3422 拆点法x->x'建立两条边+最小费用最大流
/** 题目:poj3422 拆点法+最小费用最大流 链接:http://poj.org/problem?id=3422 题意:给定n*n的矩阵,含有元素值,初始sum=0.每次从最左上角开始出发,每 ...
- Acme Corporation UVA - 11613 拆点法+最大费用最大流(费用取相反数)+费用有正负
/** 题目:Acme Corporation UVA - 11613 拆点法+最大费用最大流(费用取相反数)+费用有正负 链接:https://vjudge.net/problem/UVA-1161 ...
- Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。
/** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...
- UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配
/** 题目:UVA1349 Optimal Bus Route Design 链接:https://vjudge.net/problem/UVA-1349 题意:lrj入门经典P375 给n个点(n ...
- UVA1658 Admiral 拆点法解决结点容量(路径不能有公共点,容量为1的时候) 最小费用最大流
/** 题目:UVA1658 Admiral 链接:https://vjudge.net/problem/UVA-1658 题意:lrj入门经典P375 求从s到t的两条不相交(除了s和t外,没有公共 ...
- 紫书 习题 11-4 UVa 1660 (网络流拆点法)
这道题改了两天-- 因为这道题和节点有关, 所以就用拆点法解决节点的容量问题. 节点拆成两个点, 连一条弧容量为1, 表示只能经过一次. 然后图中的弧容量无限. 然后求最小割, 即最大流, 即为答案. ...
- UVa1658 Admiral(拆点法+最小费用流)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51253 [思路] 固定流量的最小费用流. 拆点,将u拆分成u1和u ...
随机推荐
- LuoguP1251 餐巾计划问题(费用流)
题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...
- spring bean中的properties元素内的ref和value的区别;* 和 ** 的区别
spring bean中的properties元素内的ref和value的区别 至于使用哪个是依据你所用的属性类型决定的. <bean id="sqlSessionFactory&qu ...
- 一个Web报表项目的性能分析和优化实践(七):性能监测工具JavaMelody
简介 JavaMelody 能够监测Java或Java EE应用程序服务器,并以图表的方式显示:Java内存和Java CPU使用情况,用户Session数量,JDBC连接数,和http请求.sql请 ...
- PatentTips - Improving security in a virtual machine host
BACKGROUND Computer viruses are a common problem for computer users. One typical mode of attack is t ...
- 74LS153 选择器 【数字电路】
74LS153 我用了八个不同频率的方波信号,用153当作信号选择器,控制环节的开关是4通道的选择器,00 01 10 11分别选择通道 0 1 2 3 以下是八选一的demo
- 【UWP通用应用开发】控件、应用栏
控件的属性.事件与样式资源 怎样加入控件 加入控件的方式有多种,大家更喜欢以下哪一种呢? 1)使用诸如Blend for Visual Studio或Microsoft Visual Studio X ...
- 兔子--百度地图所需的jar+so下载地址
百度地图所需的jar+so下载地址:http://download.csdn.net/detail/u013425527/8265569
- vmware-虚拟机播放器的下载、安装
如果是在window下安装的话: 1.下载vmware: 到官网下载免费个人版本 https://my.vmware.com/cn/web/vmware/free#desktop_end_user_c ...
- the resource is not on the build path of a java project错误
在eclipse中,使用mavenimport了一个工程,但是在对某一个类进行F3/F4/ctrl+alt+H操作的时候报错:“the resource is not on the build pat ...
- win7旗舰版怎么降级到专业版
一.操作准备及注意事项 1.UltraISO光盘制作工具9.5 2.备份C盘及桌面文件 二.win7旗舰版改成专业版的步骤 1.当前系统为Win7 SP1 64位旗舰版: 2.按Win+R打开运行,输 ...