链接:http://acm.hdu.edu.cn/showproblem.php?

pid=2196

题意:每一个电脑都用线连接到了还有一台电脑,连接用的线有一定的长度,最后把全部电脑连成了一棵树,问每台电脑和其它电脑的最远距离是多少。

思路:这是一道树形DP的经典题目。须要两次DFS,第一次DFS找到树上全部的节点在不同子树中的最远距离和次远的距离(在递归中进行动态规划就可以),第二次DFS从根向下更新出终于答案。对于每次更新到的节点u,他的最远距离可能是来自u的子树,或者是u的父亲节点的最远距离。假设u的父亲节点的最远距离是在第一次DFS过程中更新自u的话,那么u的最远距离就不能更新自u的父亲节点的最远节点,而是有可能更新自u的父亲节点的次远距离,这就是每次更新时要记录节点的次远距离的原因。

代码:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <ctype.h>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define eps 1e-8
#define INF 0x7fffffff
#define maxn 10005
#define PI acos(-1.0)
#define seed 31//131,1313
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
int dp[maxn][2],from[maxn],head[maxn],top;
void init()
{
memset(head,-1,sizeof(head));
memset(dp,0,sizeof(dp));
top=0;
}
struct Edge
{
int v,w;
int next;
} edge[maxn*2];
void add_edge(int u,int v,int w)
{
edge[top].v=v;
edge[top].w=w;
edge[top].next=head[u];
head[u]=top++;
}
void dfs_first(int u,int f)
{
from[u]=u;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v,w=edge[i].w;
if(v==f)
continue;
dfs_first(v,u);
if(dp[v][0]+w>dp[u][0])
{
from[u]=v;
dp[u][1]=dp[u][0];
dp[u][0]=dp[v][0]+w;
}
else if(dp[v][0]+w>dp[u][1])
dp[u][1]=dp[v][0]+w;
}
}
void dfs_second(int u,int f,int k)
{
if(u!=f)
if(from[f]!=u)
{
if(dp[f][0]+k>dp[u][0])
{
from[u]=f;
dp[u][1]=dp[u][0];
dp[u][0]=dp[f][0]+k;
}
else if(dp[f][0]+k>dp[u][1])
dp[u][1]=dp[f][0]+k;
}
else
{
if(dp[f][1]+k>dp[u][0])
{
from[u]=f;
dp[u][1]=dp[u][0];
dp[u][0]=dp[f][1]+k;
}
else if(dp[f][1]+k>dp[u][1])
dp[u][1]=dp[f][1]+k;
}
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v,w=edge[i].w;
if(v==f)
continue;
dfs_second(v,u,w);
}
}
int main()
{
int T,v,w;
while(~scanf("%d",&T))
{
init();
for(int i=2; i<=T; i++)
{
scanf("%d%d",&v,&w);
add_edge(v,i,w);
add_edge(i,v,w);
}
dfs_first(1,1);
dfs_second(1,1,0);
for(int i=1;i<=T;i++)
printf("%d\n",dp[i][0]);
}
return 0;
}

HDU 2196 Computer 树形DP经典题的更多相关文章

  1. HDU 2196 Computer 树形DP 经典题

    给出一棵树,边有权值,求出离每一个节点最远的点的距离 树形DP,经典题 本来这道题是无根树,可以随意选择root, 但是根据输入数据的方式,选择root=1明显可以方便很多. 我们先把边权转化为点权, ...

  2. hdu 2196 Computer 树形dp模板题

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. hdu 2196 Computer(树形DP经典)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  4. HDU 2196.Computer 树形dp 树的直径

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  5. hdu 2196 Computer(树形DP)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. 51nod 1353 树 | 树形DP经典题!

    51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...

  7. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  8. HDU 2196 Computer (树dp)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2196 给你n个点,n-1条边,然后给你每条边的权值.输出每个点能对应其他点的最远距离是多少 ...

  9. HDU - 2196(树形DP)

    题目: A school bought the first computer some time ago(so this computer's id is 1). During the recent ...

随机推荐

  1. 学习笔记:javascript中的Generator函数

    最近在学习redux-saga,由于redux-saga需要使用Generator函数,所以下来就回顾了一下Generator Generator 函数是 ES6 提供的一种异步编程解决方案,语法行为 ...

  2. Keras简单使用

    Keras简单使用在keras中建立模型测试自己的图片一些有用的函数(持续更新) Keras简单使用 在keras中建立模型 相对于自己写机器学习相关的函数,keras更能快速搭建模型,流程如下: 通 ...

  3. 创建一个netcore2.0和angular的项目并运行起来

    netcore2.0发布了,喜大普奔. 我们先下载SDK,请看张善友老师的这篇博客 http://www.cnblogs.com/shanyou/p/7363037.html 下载完之后 我用的vs2 ...

  4. 前端学习笔记-HTML(一)

  5. hihoCoder挑战赛32

    Rikka with Sequence V 构造 #pragma comment(linker, "/STACK:102400000,102400000") #include< ...

  6. 利用JavaScript做无缝滚动

    <html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...

  7. JavaScript获取非行间样式

    <html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...

  8. jq+mui 阻止事件冒泡

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...

  9. Rx (Reactive Extensions)介绍

    Reactive Extensions (Rx) 原来是由微软提出的一个综合了异步和基于事件驱动编程的库包,使用可观察序列和LINQ-style查询操作. 使用Rx, 开发者可以用Observable ...

  10. C# switch 语句

    switch ("MySql") //选择语句 // case语句 成对 结束 执行到 第一个break { case "SqlServer2000": cas ...