简单的RMQ,可我怎么写都WA。不明白,找了一个和我相似的贴过了,要赶着去外婆家。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <stack>
#define eps 1e-5
#define MAXN 255
#define MAXM 111111
#define INF 1000000000
using namespace std;
int mx[MAXN][MAXN][8], mi[MAXN][MAXN][8];
int n, b, q, a, c;
void rmqinit()
{
int l = int(log(double(n)) / log(2.0)) ;
for(int k = 1; k <= n ; k++)
for(int j = 1; j <= l; j++)
for(int i = 1; i + (1 << (j - 1))- 1 <= n; i++)
{
mx[k][i][j] = max(mx[k][i][j - 1], mx[k][i + (1 << (j - 1 ))][j - 1]) ;
mi[k][i][j] = min(mi[k][i][j - 1], mi[k][i + (1 << (j - 1 ))][j - 1]) ;
}
}
int rmqmax(int lx, int ly, int rx, int ry) // lx, ly为左上角的点 rx ry为右下角的点
{
int l = int(log(double(ry - ly + 1)) / log(2.0));
int ret = -1;
for(int k = lx; k <= rx ; k++)
ret = max(ret, max(mx[k][ly][l], mx[k][ry - (1 << l) + 1][l]));
return ret;
}
int rmqmin(int lx, int ly, int rx, int ry) // lx, ly为左上角的点 rx ry为右下角的点
{
int l = int(log(double(ry - ly + 1)) / log(2.0));
int ret = INF;
for(int k = lx; k <= rx ; k++)
ret = min(ret, min(mi[k][ly][l], mi[k][ry - (1 << l) + 1][l]));
return ret;
}
int main()
{
while(scanf("%d%d%d", &n, &b, &q) != EOF)
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
scanf("%d",&a);
mx[i][j][0] = mi[i][j][0] = a ;
}
rmqinit();
while(q--)
{
scanf("%d%d", &a, &c) ;
int rx = a + b - 1;
if(rx > n) rx = n;
int ry = c + b - 1;
if(ry > n) ry = n;
printf("%d\n", rmqmax(a, c, rx, ry) - rmqmin(a, c, rx, ry)) ;
}
}
return 0;
}

  

MINE:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <string.h>
#include <queue>
#include <cmath>
#include <vector>
using namespace std; int num[255][255];
int f1[255][255][30];
int f2[255][255][30];
int n,b,q;
const int inf=1000000000; int rmq_max(int p,int i, int j) {
int k = (int)(log(double(j-i+1)) / log(2.0)), t1;
t1 = max(f1[p][i][k], f1[p][j - (1<<k) + 1][k]);
return t1;
}
int rmq_min(int p,int i, int j) {
int k = (int)(log(double(j-i+1)) / log(2.0)), t2;
t2 = min(f2[p][i][k], f2[p][j - (1<<k) + 1][k]);
return t2;
} int main(){
int l,u;
while(scanf("%d%d%d",&n,&b,&q)!=EOF){
int k = (int) (log((double)n) / log(2.0));
for(int i=0;i<n;i++){
for(int j=0;j<n;j++)
scanf("%d",&num[i][j]);
for(int j = 0; j < n; j++) {
f1[i][j][0] = num[i][j];
f2[i][j][0] = num[i][j];
}
for(int p = 1; p <= k; p++) {
for(int t = 0; t + (1 << p) - 1 < n; t++) {
int m = t + (1 << (p - 1));
f1[i][t][p] = max(f1[i][t][p-1], f1[i][m][p-1]);
f2[i][t][p] = min(f2[i][t][p-1], f2[i][m][p-1]);
}
}
}
int maxn=-1,minn=inf;
for(int i=1;i<=q;i++){
scanf("%d%d",&u,&l);
l--;u--;
for(int p=u;p<(u+b);p++){
maxn=max(maxn,rmq_max(p,l,l+b-1));
minn=min(minn,rmq_min(p,l,l+b-1));
}
printf("%d\n",maxn-minn);
}
}
return 0;
}

  

POJ 2019的更多相关文章

  1. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  2. poj 2019 二维rmq *

    题目大意:给出一个N*N矩形,每个格子上有一个价值.询问一个b*b的矩形在左上角的位置(x,y),(x+b-1,y+b-1)这一部分的最大值-最小值是多少. 模板题 #include <stdi ...

  3. [POJ 2019] Cornfields

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5516   Accepted: 2714 Descri ...

  4. 二维 ST POJ 2019

    题目大意:给你一个n*n的矩阵,每次给你一个点(x,y),以其为左上角,宽度为b的矩阵中最小的数值和最大数值的差是多少?  一共k个询问. 思路:简单的二维st. 定义dp(i,j,k,L)表示以(i ...

  5. POJ 2019 Cornfields(二维RMQ)

    相比以前的RMQ不同的是,这是一个二维的ST算法 #include<iostream> #include<cstring> #include<cstdio> #in ...

  6. Cornfields POJ - 2019(二维RMQ板题)

    就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...

  7. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

  8. POJ 2019 Cornfields 二维线段树的初始化与最值查询

    模板到不行.. 连更新都没有.. .存个模板. 理解留到小结的时候再写. #include <algorithm> #include <iostream> #include & ...

  9. ACM第一阶段学习内容

    一.知识目录 字符串处理 ................................................................. 3 1.KMP 算法 .......... ...

随机推荐

  1. yolo源码解析(3):进行简单跳帧

    视频检测命令  ./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights ../../dataset/ ...

  2. Swift - 可编辑表格样例(可直接编辑单元格中内容、移动删除单元格)

    (本文代码已升级至Swift3)   本文演示如何制作一个可以编辑单元格内容的表格(UITableView). 1,效果图 (1)默认状态下,表格不可编辑,当点击单元格的时候会弹出提示框显示选中的内容 ...

  3. Spark中常用的算法

    Spark中常用的算法: 3.2.1 分类算法 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类.分类在数据挖掘中是一项重要 ...

  4. Java IO-InputStream家族 -装饰者模式

    最近看到一篇文章,初步介绍java.io.InputStream,写的非常通俗易懂,在这里我完全粘贴下来. 来源于 https://mp.weixin.qq.com/s/hDJs6iG_YPww7ye ...

  5. win10 + vs2017 + vcpkg —— VC++ 打包工具

    vcpkg 是微软 C++ 团队开发的在 Windows 上运行的 C/C++ 项目包管理工具,可以帮助您在 Windows 平台上获取 C 和 C++ 库. vcpkg 自身也是使用 C++ 开发的 ...

  6. NOIP 2012 D1T1 Vigenère密码

    嗯嗯 一道找规律的题.... 真佩服那些把表打出来的人 //By SiriusRen #include <cstdio> #include <cstring> using na ...

  7. java三大版本解析

    JAVA三大版本代表着JAVA技术的三个应用领域:JAVASE.JAVAME.JAVAEE. JAVA以前很长一段时间被称为JAVA2,所以现在很多人习惯称为J2SE.J2ME.J2EE,它们表示的含 ...

  8. Android拼图-变形金刚

    开篇 学了几个月的Android开发,动手做了一个简单的拼图小游戏,没有使用游戏框架,名字也纯属娱乐,比较粗糙请大家一笑别骂. 游戏界面是一张图片切割的6*6的小图片,并将其中一块拿走,玩家通过不同的 ...

  9. HTML实现图片360度循环旋转

    <style> .header{ -webkit-animation:rotateImg 5s linear infinite;<!--修改旋转周期--> border: 1p ...

  10. (转)webpack从零开始第6课:在Vue开发中使用webpack

    vue官方已经写好一个vue-webpack模板vue_cli,原本自己写一个,发现官方写得已经够好了,自己写显得有点多余,但为了让大家熟悉webpack,决定还是一步一步从0开始写,但源文件就直接拷 ...