POJ2739_Sum of Consecutive Prime Numbers【筛法求素数】【枚举】
Memory Limit: 65536K
Accepted: 10619
Description
Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have?
For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has
three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
Your mission is to write a program that reports the number of representations for the given positive integer.
Input
The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.
Output
The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted
in the output.
Sample Input
2
3
17
41
20
666
12
53
0
Sample Output
1
1
2
3
0
0
1
2
Source
Japan 2005
题目大意:
一个数能够由若干种连续的素数序列求和得到,比方说41 = 2+3+5+7+11+13 = 11+13+17 = 41
共同拥有三种不同的素数序列求和得到。给你一个数N,求满足N = 连续的素数序列和的方案数
思路:
非常easy的题目。可是用普通方法推断素数可能会超时,这里用了筛法求素数的方法直接用数组Prime
推断是否为素数,另开一个数组PrimeNum用来存全部的素数。
最后就是枚举,求得满足的方案数
#include<stdio.h>
#include<string.h> int Prime[10010],PrimeNum[10010]; int IsPrime()//筛法求素数
{
Prime[0] = Prime[1] = 0; for(int i = 2; i <= 10000; i++)
Prime[i] = 1;
for(int i = 2; i <= 10000; i++)
{
for(int j = i+i; j <= 10000; j+=i)
Prime[j] = 0;
}
int num = 0;
for(int i = 0; i <= 10000; i++)
if(Prime[i])
PrimeNum[num++] = i; return num;
}
int main()
{
int num = IsPrime();
int N;
while(~scanf("%d",&N) && N!=0)
{
int count = 0;
for(int i = 0; PrimeNum[i]<=N && i < num; i++)//枚举
{
int sum = 0;
for(int j = i; PrimeNum[j]<=N && j < num; j++)
{
sum += PrimeNum[j];
if(sum == N)
{
count++;
break;
}
if(sum > N)
break;
}
} printf("%d\n",count);
} return 0;
}
POJ2739_Sum of Consecutive Prime Numbers【筛法求素数】【枚举】的更多相关文章
- How many prime numbers(求素数个数)
How many prime numbers Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- POJ 2739 Sum of Consecutive Prime Numbers【素数打表】
解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS Memo ...
- POJ 2739 Sum of Consecutive Prime Numbers(素数)
POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...
- JD 题目1040:Prime Number (筛法求素数)
OJ题目:click here~~ 题目分析:输出第k个素数 贴这么简单的题目,目的不清纯 用筛法求素数的基本思想是:把从1開始的.某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉.剩下 ...
- Sum of Consecutive Prime Numbers(素数打表+尺取)
Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...
- POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19895 ...
- poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19697 ...
- POJ2739 Sum of Consecutive Prime Numbers(尺取法)
POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...
随机推荐
- Ansible学习记录六:Tower安装
0.特别说明 1. 本文档没有特殊说明,均已root用户安装 2. 本文档中ftp传输文件的工具采用filezilla. 3. 本文档中的执行命令必须严格按照顺序而来. 4. 本文档中所用浏览器为Go ...
- Python day字符串所有使用
字符串所有的操作name = "dio"names = "my\t name is {Name} and i am a {job}"print(name.cap ...
- Java中JVM虚拟机详解
1. 什么是JVM? JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来 ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- php函数按地址传递参数(php引用)
php函数按地址传递参数(php引用) 一.总结 1.php引用:php引用和c++一样,都是在变量前加&(取地址符号) 2.php函数按地址传递参数:php函数按地址传递参数(php引用)也 ...
- spring基础内容
关注和收藏在这里 深入理解Spring框架的作用 纵览Spring , 读者会发现Spring 可以做非常多的事情. 但归根结底, 支撑Spring的仅仅是少许的基本理念, 所有的理念都可以追 ...
- 13.constexpr
#include <iostream> using namespace std; //声明返回值为常量表达式 constexpr int get() { ; return num; } v ...
- 方正飞越 A600硬改BIOS激活win7的工具与方法。
硬件:方正飞越A600-4E57:主板,H61 IPISB-VR:BIOS版本,方正A007SB0(AMI) 软件:Win7专业版 目标:修改BIOS,添加SLIC2.1,硬激活win7 OEM版 具 ...
- 2.1 Vue组件
Vue组件 全局组件和局部组件 父子组件通讯-数据传递 父->子:通过Props传递 子->父:不允许,但vue通过子组件触发Emit来提交给子组件进行触发 Slot import Cou ...
- HSV颜色模型
HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model). 注意的是OpenC ...