Sum of Consecutive Prime Numbers
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 19350
Accepted: 10619

Description





Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have?

For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has
three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 

numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 

Your mission is to write a program that reports the number of representations for the given positive integer.

Input





The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output





The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted
in the output.

Sample Input





2

3

17

41

20

666

12

53

0

Sample Output





1

1

2

3

0

0

1

2

Source

Japan 2005

题目大意:

一个数能够由若干种连续的素数序列求和得到,比方说41 = 2+3+5+7+11+13 = 11+13+17 = 41

共同拥有三种不同的素数序列求和得到。给你一个数N,求满足N = 连续的素数序列和的方案数

思路:

非常easy的题目。可是用普通方法推断素数可能会超时,这里用了筛法求素数的方法直接用数组Prime

推断是否为素数,另开一个数组PrimeNum用来存全部的素数。

最后就是枚举,求得满足的方案数

#include<stdio.h>
#include<string.h> int Prime[10010],PrimeNum[10010]; int IsPrime()//筛法求素数
{
Prime[0] = Prime[1] = 0; for(int i = 2; i <= 10000; i++)
Prime[i] = 1;
for(int i = 2; i <= 10000; i++)
{
for(int j = i+i; j <= 10000; j+=i)
Prime[j] = 0;
}
int num = 0;
for(int i = 0; i <= 10000; i++)
if(Prime[i])
PrimeNum[num++] = i; return num;
}
int main()
{
int num = IsPrime();
int N;
while(~scanf("%d",&N) && N!=0)
{
int count = 0;
for(int i = 0; PrimeNum[i]<=N && i < num; i++)//枚举
{
int sum = 0;
for(int j = i; PrimeNum[j]<=N && j < num; j++)
{
sum += PrimeNum[j];
if(sum == N)
{
count++;
break;
}
if(sum > N)
break;
}
} printf("%d\n",count);
} return 0;
}

POJ2739_Sum of Consecutive Prime Numbers【筛法求素数】【枚举】的更多相关文章

  1. How many prime numbers(求素数个数)

    How many prime numbers Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  3. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  4. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  5. JD 题目1040:Prime Number (筛法求素数)

    OJ题目:click here~~ 题目分析:输出第k个素数 贴这么简单的题目,目的不清纯 用筛法求素数的基本思想是:把从1開始的.某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉.剩下 ...

  6. Sum of Consecutive Prime Numbers(素数打表+尺取)

    Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...

  7. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  8. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

  9. POJ2739 Sum of Consecutive Prime Numbers(尺取法)

    POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...

随机推荐

  1. django shell 操作

    插件:django-extensions django-extensions==1.9.8 pip3 install  django-extensions 1.数据库shell 命令(项目目录下) p ...

  2. 窗体是不出现在Alt+Tab中(窗体不出现在任务管理器中的应用程序列中)

    窗体是不出现在Alt+Tab中和不出现在任务管理器中的应用程序中 重写 CreateParams即可: public class MyForm : Form{ protected override C ...

  3. 洛谷 P3371 【模板】单源最短路径

    P3371 [模板]单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出 ...

  4. Elasticsearch中JAVA API的使用

    1.Elasticsearch中Java API的简介 Elasticsearch 的Java API 提供了非常便捷的方法来索引和查询数据等. 通过添加jar包,不需要编写HTTP层的代码就可以开始 ...

  5. thinkphp最简单路由

    thinkphp最简单路由 一.总结 1.路由应用场景(前台要,后台不要):前台所有人都可以看,所以前台的话设置路由,后台的话并不是所有人都进去,所以不需要设置路由 2.模块分离来实现路由场景应用:前 ...

  6. try {}里有一个return语句 finally执行顺序

    先看例子 package example; class Demo{ public static void main(String args[]) { int x=1; System.out.print ...

  7. Flume的可扩展性

    Flume的可扩展性:Flume采用了三层架构,分别为agent,collector和storage,每一层均可以水平扩展.其中,所有agent和 collector由master统一管理,这使得系统 ...

  8. spring jdbcTemplate使用queryForList示例

    查询代码: LogVo 日志要显示的内容(Log的部分或者全部列) Log是日志完整的实体 public List<LogVO> findLogByDate(String startDat ...

  9. centos7 Another app is currently holding the yum lock; waiting for it to exit...

    解决方法:rm -rf /var/run/yum.pid 来强行解除锁定,然后你的yum就可以运行了

  10. 洛谷——P1540 机器翻译

    https://www.luogu.org/problem/show?pid=1540#sub 题目背景 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章. 题目描述 这个翻译软件的 ...