求关键路径,只需理解顶点(事件)和边(活动)各自的两个特征属性以及求法即可:

   Ø  先根据首结点的Ve(j)=0由前向后(正拓扑序列)计算各顶点的最早发生时间

   Ø  再根据终结点的Vl(j)等于它的Ve(j)由后向前(逆序拓扑)依次求解各顶点的最晚发生时间

   Ø  根据边的ee(i)等于它的发出顶点的Ve(j)计算各边的最早开始时间(最早开始,对应最早发生)

   Ø  根据边的ll(i)等于它的到达顶点的Vl(j)减去边的权值计算各边的最晚开始时间(最晚开始,对应最晚发生)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<stack>
#define MAX_NODE_NUM 100
using namespace std; int first[MAX_NODE_NUM];
typedef struct EDGE{
int u, v, w;
int nextarc;
EDGE(){
}
EDGE(int u, int v, int w, int nextarc){
this->u = u;
this->v = v;
this->w = w;
this->nextarc = nextarc;
}
} edge; vector<edge> g;
stack<int> s, t;//s存储入度为零的节点, t存储图的拓扑序列的顶点栈 int ve[MAX_NODE_NUM];//事件的最早发生时间, 或者 活动ai的最早发生时间
int vl[MAX_NODE_NUM];//事件的最晚发生时间
int degIn[MAX_NODE_NUM];//记录每一个节点的入度
int tag[MAX_NODE_NUM][MAX_NODE_NUM];
int n, m;//分别为图的节点的个数,和边的个数 bool topoSort(){
memset(ve, , sizeof(ve));
int cnt = ;//记录
for(int i=; i<=n; ++i)
if(degIn[i] == )
s.push(i);
while(!s.empty()){
int u = s.top();
s.pop();
t.push(u);
++cnt;
for(int e=first[u]; ~e; e=g[e].nextarc){
int v = g[e].v;
int w = g[e].w;
if(--degIn[v] == ) s.push(v);
if(ve[u] + w > ve[v]) ve[v] = ve[u] + w;
}
}
if(cnt < n) return false;//该有向图存在回路
return true;
} bool criticalPath() {//寻找关键路径
if(!topoSort()) return false;
for(int i=; i<=n; ++i)
vl[i] = ve[t.top()];
while(!t.empty()){//逆序拓扑排序,计算每个节点的最晚的发生时间
int u = t.top();
t.pop();
for(int e=first[u]; ~e; e=g[e].nextarc){
int v = g[e].v;
int w = g[e].w;
if(vl[v] - w < vl[u]) vl[u] = vl[v] - w;
}
} for(int i=; i<=n; ++i){//输出关节点
int ee = ve[i];//活动ai的最早的发生时间
for(int e=first[i]; ~e; e=g[e].nextarc) {
int v = g[e].v;
int w = g[e].w;
int ll = vl[v]-w;//活动ai的最晚的发生时间
ll == ee ? printf(" * ") : printf(" ");
printf("%d %d %d %d %d\n", i, v, w, ee, ll);//分别为 u, v, w(这条边所对应的活动), 活动最早发生时间和最晚发生时间
}
}
return true;
} void dfs(int u){
for(int e=first[u]; ~e; e=g[e].nextarc) {
int ee = ve[u];
int v = g[e].v;
int w = g[e].w;
dfs(v);
if(tag[u][v]) continue;
tag[u][v] = ;
if(vl[v]-w < vl[u]) vl[u] = vl[v]-w;
int ll = vl[v]-w;//活动au的最晚的发生时间
ll == ee ? printf(" * ") : printf(" ");
printf("%d %d %d %d %d\n", u, v, w, ee, ll);
}
} bool criticalPathx() {//寻找关键路径,利用dfs可以
if(!topoSort()) return false;
for(int i=; i<=n; ++i)
vl[i] = ve[t.top()];
dfs();//默认1节点为源点
} void addEdge(int u, int v, int w){
edge e(u, v, w, first[u]);
first[u] = g.size();
g.push_back(e);
} int main(){
printf("请输入图的节点的个数和边的个数:\n");
scanf("%d%d", &n, &m);
memset(first, -, sizeof(first));
while(m--){
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
addEdge(u, v, w);
++degIn[v];
}
//criticalPath();
/*输出结果:
* 1 3 2 0 0
1 2 3 0 1
2 4 2 3 4
2 5 3 3 4
3 6 3 2 5
* 3 4 4 2 2
* 4 6 2 6 6
5 6 1 6 7
*/
criticalPathx();
/*输出结果:
3 6 3 2 5
* 4 6 2 6 6
* 3 4 4 2 2
* 1 3 2 0 0
2 4 2 3 4
5 6 1 6 7
2 5 3 3 4
1 2 3 0 1
*/
return ;
} 输入数据:

6 8
1 2 3
2 5 3
5 6 1
2 4 2
4 6 2
3 4 4
1 3 2
3 6 3

 

AOE网的关键路径的计算的更多相关文章

  1. AOE网与关键路径简介

    前面我们说过的拓扑排序主要是为解决一个工程能否顺序进行的问题,但有时我们还需要解决工程完成需要的最短时间问题.如果我们要对一个流程图获得最短时间,就必须要分析它们的拓扑关系,并且找到当中最关键的流程, ...

  2. 基于AOE网的关键路径的求解

    [1]关键路径 在我的经验意识深处,“关键”二字一般都是指临界点. 凡事万物都遵循一个度的问题,那么存在度就会自然有临界点. 关键路径也正是研究这个临界点的问题. 在学习关键路径前,先了解一个AOV网 ...

  3. _DataStructure_C_Impl:AOE网的关键路径

    //_DataStructure_C_Impl:CriticalPath #include<stdio.h> #include<stdlib.h> #include<st ...

  4. AOE网与关键路径

    声明:图片及内容基于https://www.bilibili.com/video/BV1BZ4y1T7Yx?from=articleDetail 原理 AOE网 关键路径 数据结构 核心代码 Topo ...

  5. 教你轻松计算AOE网关键路径(转)

    原文链接:http://blog.csdn.net/wang379275614/article/details/13990163 本次结合系统分析师-运筹方法-网络规划技术-关键路径章节,对原文链接描 ...

  6. 教你轻松计算AOE网关键路径

    认识AOE网 有向图中,用顶点表示活动,用有向边表示活动之间开始的先后顺序,则称这种有向图为AOV网络:AOV网络可以反应任务完成的先后顺序(拓扑排序). 在AOV网的边上加上权值表示完成该活动所需的 ...

  7. 数据结构关于AOV与AOE网的区别

    AOV网,顶点表示活动,弧表示活动间的优先关系的有向图. 即如果a->b,那么a是b的先决条件. AOE网,边表示活动,是一个带权的有向无环图, 其中顶点表示事件,弧表示活动,权表示活动持续时间 ...

  8. AOV图与拓扑排序&AOE图与关键路径

    AOV网:所有的工程或者某种流程可以分为若干个小的工程或阶段,这些小的工程或阶段就称为活动.若以图中的顶点来表示活动,有向边表示活动之间的优先关系,则这样活动在顶点上的有向图称为AOV网. 拓扑排序算 ...

  9. AOE网络的关键路径问题

    关于AOE网络的基本概念可以参考<数据结构>或者search一下就能找到,这里不做赘述. 寻找AOE网络的关键路径目的是:发现该活动网络中能够缩短工程时长的活动,缩短这些活动的时长,就可以 ...

随机推荐

  1. Flask_more1

    #DB ``` import os basedir = os.path.abspath(os.path.dirname(__file__))   SQLALCHEMY_DATABASE_URI = ' ...

  2. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  3. postman 断言解析

    最近在学习postman官方文档, 顺势翻译出来,以供学习! postman断言是JavaScript语言编写的,在postman客户端指定区域编写即可. 断言会在请求返回之后,运行,并根据断言的pa ...

  4. Qt里怎么处理二进制数据

    Qt里有个专门的类QDataStream就是专门读写二进制数据的, 它与QByteArray搭配在网络编程中有奇效. 来个栗子: // write data QByteArray data; QDat ...

  5. wex5中的星星评分

    新建一个空白的.w文件,然后在页面上放5个img星星图片 重要的是图片路径不能是绝对路径,要用相对路径,不然js操作的时候会出bug 添加两个label标签(标签随你挑,在这我就用label) 你到时 ...

  6. 安卓(android)之实现断点下载功能

    一.建立实体类 1.文件实体类 package com.example.zjw.myapplication.dao; import java.io.Serializable; /** * 预下载文件实 ...

  7. Torch7学习笔记(二)nn Package

    神经网络Package [目前还属于草稿版,等我整个学习玩以后会重新整理] 模块Module module定义了训练神经网络需要的所有基础方法,并且是可以序列化的抽象类. module有两种状态变量: ...

  8. 可变字符串NSMutableString

    //可变字符串继承自字符串 //拼接 NSMutableString *string = [NSMutableString string]; [string appendString:@"今 ...

  9. Spring AOP实例——异常处理和记录程序执行时间

    实例简介: 这个实例主要用于在一个系统的所有方法执行过程中出线异常时,把异常信息都记录下来,另外记录每个方法的执行时间. 用两个业务逻辑来说明上述功能,这两个业务逻辑首先使用Spring AOP的自动 ...

  10. PMP备考_第五章_项目范围管理_实践思考

    项目范围管理 前言 今天学习项目范围管理的内容,深切的感受到了原单位在项目管理方面存在的问题,今天在这里做一个总结,既相当于对项目范围的一个学习整理,也相当于自己对项目实践过程中存在问题的一个思考. ...