Prime Bases

Problem Description
Given any integer base b >= 2, it is well known that every positive integer n can be uniquely represented in base b. That is, we can write

n = a0 + a1*b + a2*b*b + a3*b*b*b + ...

where the coefficients a0, a1, a2, a3, ... are between 0 and b-1 (inclusive).

What is less well known is that if p0, p1, p2, ... are the first primes (starting from 2, 3, 5, ...), every positive integer n can be represented uniquely in the "mixed" bases as:

n = a0 + a1*p0 + a2*p0*p1 + a3*p0*p1*p2 + ...

where each coefficient ai is between 0 and pi-1 (inclusive). Notice that, for example, a3 is between 0 and p3-1, even though p3 may not be needed explicitly to represent the integer n.

Given a positive integer n, you are asked to write n in the representation above. Do not use more primes than it is needed to represent n, and omit all terms in which the coefficient is 0.

 
Input
Each line of input consists of a single positive 32-bit signed integer. The end of input is indicated by a line containing the integer 0.
 
Output
For each integer, print the integer, followed by a space, an equal sign, and a space, followed by the mixed base representation of the integer in the format shown below. The terms should be separated by a space, a plus sign, and a space. The output for each integer should appear on its own line.
 
Sample Input
123
456
123456
0
 
Sample Output
123 = 1 + 1*2 + 4*2*3*5
456 = 1*2*3 + 1*2*3*5 + 2*2*3*5*7
123456 = 1*2*3 + 6*2*3*5 + 4*2*3*5*7 + 1*2*3*5*7*11 + 4*2*3*5*7*11*13
 
题意: 
  给你一个数:让你表示成 连续素数 下 乘系数  形式,列如  连续 素数 a*2*3*5  
  且满足a <= 5后面这个素数(7)-1
题解:
  n的范围是32位
  我们打个表知道最多就是13位连续素数相乘
  我们从最大的开始,看n是否大于它,大于的话求出系数,记录答案,否则 向下接着如此判断
  注意边界
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<vector>
using namespace std ;
typedef long long ll; const int N = + ;
const int mod = 1e9 + ;
ll n;
int a[] = {,,,,,,,,,,,,,};
ll ans[N];
ll sum[];
int main() {
sum[] = ;
for(int i = ; i <= ; i++) sum[i] = sum[i-] * a[i];
while(~scanf("%lld",&n)) {
if(!n) break;
int cool = ;
printf("%lld = ",n);
memset(ans,,sizeof(ans));
for(int i = ; i >= ; i--) {
if(n / sum[i]) {
ll tmp = n / sum[i];
n = n % sum[i];
ans[i] = tmp;
cool++;
}
}
int f = ;
if(n) printf(""),f = ;
for(int i = ; i <= ; i++) {
if(ans[i]) {
cool--;
if(f)printf(" + "),f=;
printf("%lld",ans[i]);
for(int j = ; j <= i; j++) printf("*%d",a[j]);
if(cool!=) printf(" + "); }
}
printf("\n");
}
return ;
}

UVALive 4225 / HDU 2964 Prime Bases 贪心的更多相关文章

  1. hdu 2964 Prime Bases(简单数学题)

    按照题意的要求逐渐求解: #include<stdio.h> #include<string.h> #include<algorithm> using namesp ...

  2. UVALive 4225 Prime Bases 贪心

    Prime Bases 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&a ...

  3. HDU 4442 Physical Examination(贪心)

    HDU 4442 Physical Examination(贪心) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=4442 Descripti ...

  4. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  5. UVALive - 4225(贪心)

    题目链接:https://vjudge.net/contest/244167#problem/F 题目: Given any integer base b ≥ 2, it is well known ...

  6. HDU 1016 Prime Ring Problem(经典DFS+回溯)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. hdu 1973 Prime Path

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...

  8. HDU 1016 Prime Ring Problem

    在刚刚写完代码的时候才发现我以前交过这道题,可是没有过. 后来因为不理解代码,于是也就不了了之了. 可说呢,那时的我哪知道什么DFS深搜的东西啊,而且对递归的理解也很肤浅. 这道题应该算HDU 261 ...

  9. HDU 5835 Danganronpa (贪心)

    Danganronpa 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5835 Description Chisa Yukizome works as ...

随机推荐

  1. Cocos2d-x学习资源集锦+有奖抽楼活动

    大家好,事实上我是这个游戏开发版块的新任版主之中的一个,可能大家的焦点都在candycat1992女版主身上,所以我认为我应该冒个泡. 俗话说,新版主上任,三把"水"(是你自己说的 ...

  2. &lt;LeetCode OJ&gt; 100. Same Tree

    100. Same Tree Total Accepted: 100129 Total Submissions: 236623 Difficulty: Easy Given two binary tr ...

  3. USACO 1.4 Mother's Milk

    Mother's Milk Farmer John has three milking buckets of capacity A, B, and C liters. Each of the numb ...

  4. Python笔记(三)

    # -*- coding:utf-8 -*- # 运算符 a,b=10,20 # 算术运算符:包括+.-.*./.%.**.//运算 print "********************1 ...

  5. 关于Android对话框简单实用方法总结

    要显示一个对话框,首先需要在xx.xml下添加一个Button按钮,并添加一个对应id. 单次点击事件对话框: button.setOnClickListener(new View.OnClickLi ...

  6. PHP魔术方法__clone()篇

    PHP中定义了一个内置方法__clone()来调整兑现的克隆行为: 当一个对象被克隆的时候会自动执行__clone()方法,而复制的对象可以在其方法内进行调整 header('Content-type ...

  7. day07 分支,循环

    目录 if(分支) if的语法 if...else... if...elif...else if的嵌套 for循环 for-else 语句 for循环的嵌套(重要) range介绍 while循环 w ...

  8. EL表达式的作用与限制条件

    限制条件 只能访问域对象的数据 用法 访问基本数据类型 首先把数据保存在域对象中 pagecontext.setAttribute("name","eric") ...

  9. java开发移动端之spring的restful风格定义

    https://www.ibm.com/developerworks/cn/web/wa-spring3webserv/index.html

  10. python链接mysql数据库

    1.安装pycharm python3.6    pip 在windows+R  cmd where pip pip install mysql-client 如何看自已mysql-client有没有 ...