Prime Bases

Problem Description
Given any integer base b >= 2, it is well known that every positive integer n can be uniquely represented in base b. That is, we can write

n = a0 + a1*b + a2*b*b + a3*b*b*b + ...

where the coefficients a0, a1, a2, a3, ... are between 0 and b-1 (inclusive).

What is less well known is that if p0, p1, p2, ... are the first primes (starting from 2, 3, 5, ...), every positive integer n can be represented uniquely in the "mixed" bases as:

n = a0 + a1*p0 + a2*p0*p1 + a3*p0*p1*p2 + ...

where each coefficient ai is between 0 and pi-1 (inclusive). Notice that, for example, a3 is between 0 and p3-1, even though p3 may not be needed explicitly to represent the integer n.

Given a positive integer n, you are asked to write n in the representation above. Do not use more primes than it is needed to represent n, and omit all terms in which the coefficient is 0.

 
Input
Each line of input consists of a single positive 32-bit signed integer. The end of input is indicated by a line containing the integer 0.
 
Output
For each integer, print the integer, followed by a space, an equal sign, and a space, followed by the mixed base representation of the integer in the format shown below. The terms should be separated by a space, a plus sign, and a space. The output for each integer should appear on its own line.
 
Sample Input
123
456
123456
0
 
Sample Output
123 = 1 + 1*2 + 4*2*3*5
456 = 1*2*3 + 1*2*3*5 + 2*2*3*5*7
123456 = 1*2*3 + 6*2*3*5 + 4*2*3*5*7 + 1*2*3*5*7*11 + 4*2*3*5*7*11*13
 
题意: 
  给你一个数:让你表示成 连续素数 下 乘系数  形式,列如  连续 素数 a*2*3*5  
  且满足a <= 5后面这个素数(7)-1
题解:
  n的范围是32位
  我们打个表知道最多就是13位连续素数相乘
  我们从最大的开始,看n是否大于它,大于的话求出系数,记录答案,否则 向下接着如此判断
  注意边界
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<vector>
using namespace std ;
typedef long long ll; const int N = + ;
const int mod = 1e9 + ;
ll n;
int a[] = {,,,,,,,,,,,,,};
ll ans[N];
ll sum[];
int main() {
sum[] = ;
for(int i = ; i <= ; i++) sum[i] = sum[i-] * a[i];
while(~scanf("%lld",&n)) {
if(!n) break;
int cool = ;
printf("%lld = ",n);
memset(ans,,sizeof(ans));
for(int i = ; i >= ; i--) {
if(n / sum[i]) {
ll tmp = n / sum[i];
n = n % sum[i];
ans[i] = tmp;
cool++;
}
}
int f = ;
if(n) printf(""),f = ;
for(int i = ; i <= ; i++) {
if(ans[i]) {
cool--;
if(f)printf(" + "),f=;
printf("%lld",ans[i]);
for(int j = ; j <= i; j++) printf("*%d",a[j]);
if(cool!=) printf(" + "); }
}
printf("\n");
}
return ;
}

UVALive 4225 / HDU 2964 Prime Bases 贪心的更多相关文章

  1. hdu 2964 Prime Bases(简单数学题)

    按照题意的要求逐渐求解: #include<stdio.h> #include<string.h> #include<algorithm> using namesp ...

  2. UVALive 4225 Prime Bases 贪心

    Prime Bases 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&a ...

  3. HDU 4442 Physical Examination(贪心)

    HDU 4442 Physical Examination(贪心) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=4442 Descripti ...

  4. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  5. UVALive - 4225(贪心)

    题目链接:https://vjudge.net/contest/244167#problem/F 题目: Given any integer base b ≥ 2, it is well known ...

  6. HDU 1016 Prime Ring Problem(经典DFS+回溯)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. hdu 1973 Prime Path

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...

  8. HDU 1016 Prime Ring Problem

    在刚刚写完代码的时候才发现我以前交过这道题,可是没有过. 后来因为不理解代码,于是也就不了了之了. 可说呢,那时的我哪知道什么DFS深搜的东西啊,而且对递归的理解也很肤浅. 这道题应该算HDU 261 ...

  9. HDU 5835 Danganronpa (贪心)

    Danganronpa 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5835 Description Chisa Yukizome works as ...

随机推荐

  1. 分享几个可用的rtsp, http測试url

    rtsp://218.204.223.237:554/live/1/0547424F573B085C/gsfp90ef4k0a6iap.sdp rtsp://218.204.223.237:554/l ...

  2. 通过setSystemUiVisibility实现状态栏跟Activity之间的位置关系

    曾经说到去除状态栏和标题栏总会用到动态代码的方式实现: getWindow().setFlags(WindowManager.LayoutParams. FLAG_FULLSCREEN , Windo ...

  3. [POJ 1316] 树上的询问

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1316 [算法] 点分治 由于边权较大,笔者在计算时使用了STL-set 注意当询问为 ...

  4. TCP/IP协议族简介

    OSI网络分层介绍 网络结构的标准模型是OSI模型,由国际互联网标准化组织定义的网络分层模型.虽然目前没有完全按照这种模型实现的网络协议栈,但是学习这个模型对于我们理解网络协议还是很有帮助的. 1.O ...

  5. 关于懒加载中的self.和_

    ---恢复内容开始--- 在开发中,经常会用到懒加载,最常用的如加载一个数组 如图,在这个懒加载数组中有的地方用到了_array有的地方用到了self.array 原因是_array是直接访问,而se ...

  6. SQL语句之WITH AS

    一.WITH AS的含义 WITH AS短语,也叫做子查询部分(subquery factoring),可以让你做很多事情,定义一个SQL片断,该SQL片断会被整个SQL语句所用到. 其实就是把一大堆 ...

  7. Session会在浏览器关闭后消失吗?

    转  http://blog.csdn.net/rongwenbin/article/details/51784310 Cookie的两种类型   在项目开发中我们时常将需要在客户端(浏览器)缓存的数 ...

  8. Centos7 minimal 系列之Nginx负载均衡搭建(四)

    一.Nginx搭建请参考我的上篇文章 http://www.cnblogs.com/WJ--NET/p/8143899.html 二.在IIS上搭建2个网站 三.配置nginx 虚拟机和主机网络互通请 ...

  9. 嵌入式Linux基础知识

    一.构建嵌入式开发环境 1.编译bootloader并烧写到板子中---uboot, 可以自己定制bootloader and logo 2.编译file system 并烧写--内嵌APP 3.编译 ...

  10. tp5控制器调用,方法调用

      <?php //命名空间 namespace app\index\controller; use app\admin\controller\Deer; class User{ public ...