caffe框架自带的例子mnist里有一个lenet_solver.prototxt文件,这个文件是具体的训练网络的引入文件,定义了CNN网络架构之外的一些基础参数,如总的迭代次数、测试间隔、基础学习率、基础学习率的更新策略、训练平台(GPU或CPU)等。

# The train/test net protocol buffer definition   //对训练和测试网络的定义
//网络的路径,可以使用绝对路径或者相对路径
net: "D:/Software/Caffe/caffe-master/examples/mnist/lenet_train_test.prototxt"
//test_iter参数定义训练流程中前向传播的总批次数
# test_iter specifies how many forward passes the test should carry out.
//在MNIST中,定义的是每批次100张图片,一共100个批次,覆盖了全部10000个测试图例
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images. /*
test_iter是定义的测试图例分为多少批次,由于一次性执行所有的测试图例效率很低,所以把测试
图例分为几个批次来依次执行,每个批次包含的图例数量是在net网络的模型文件.prototxt中的
batch_size变量定义的,test_iter*batch_size等于总的测试图集数量
*/
test_iter: 100
//测试间隔,训练没迭代500次后执行一次测试(测试是为了获得当前模型的训练精度)
# Carry out testing every 500 training iterations.
test_interval: 500 /*
网络的学习率设置
1. base_lr:表示base learning rate,基础学习率,一般在网络模型中的每一层都会定义两个名称为
“lr_mult”的学习率系数,这个学习率系数乘上基础学习率(base_lr*lr_mult)才是最终的学习率
2. momentum:冲量单元是梯度下降法中一种常用的加速技术,作用是有助于训练过程中逃离局部
最小值,使网络能够更快速的收敛,具体的值是经过反复的迭代调试获得的经验值
3. weight_decay:权值衰减的设置是为了防止训练出现过拟合,在损失函数中,weight_decay是放
在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度。weight_decay可以调节
模型复杂度对损失函数的影响,提高模型的泛化能力
*/
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005 /*
学习率修改策略
以上设置的是初始学习率参数,在训练过程中,依据需要,可以不断调整学习率的参数,调整的策略是
通过lr_policy定义的 lr_policy可以设置为下面这些值,相应的学习率的计算为:
- fixed:   保持base_lr不变.
- step:    如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- exp:   返回base_lr * gamma ^ iter, iter为当前迭代次数
- inv:   如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
- poly:    学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
*/
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
//每迭代100次显示一次执行结果
# Display every 100 iterations
display: 100
//最大迭代次数
# The maximum number of iterations
max_iter: 10000
//生成中间结果,记录迭代5000次之后结果,定义caffeModel文件生成路径
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "D:/Software/Caffe/caffe-master/examples/mnist/lenet"
//运行模式,CPU或者GPU
# solver mode: CPU or GPU
solver_mode: GPU

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

可以设定网络经过多少次迭代训练之后去评价当前的网络。

caffe中lenet_solver.prototxt配置文件注解的更多相关文章

  1. caffe中lenet_train_test.prototxt配置文件注解

    caffe框架下的lenet.prototxt定义了一个广义上的LeNet模型,对MNIST数据库进行训练实际使用的是lenet_train_test.prototxt模型. lenet_train_ ...

  2. 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别

    本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...

  3. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

  4. Caffe中deploy.prototxt 和 train_val.prototxt 区别

    之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下 本人以熟悉的LeNet网络结构为例子 不同点主要在一前一后,相同点都在中间 train ...

  5. caffe中通过prototxt文件查看神经网络模型结构的方法

    在修改propotxt之前我们可以对之前的网络结构进行一个直观的认识: 可以使用http://ethereon.github.io/netscope/#/editor 这个网址. 将propotxt文 ...

  6. caffe 中solver.prototxt

    关于cifar-10和mnist的weight_decay和momentum也是相当的重要:就是出现一次把cifar-10的两个值直接用在mnist上,发现错误很大.

  7. caffe中LetNet-5卷积神经网络模型文件lenet.prototxt理解

    caffe在 .\examples\mnist文件夹下有一个 lenet.prototxt文件,这个文件定义了一个广义的LetNet-5模型,对这个模型文件逐段分解一下. name: "Le ...

  8. Windows下使用python绘制caffe中.prototxt网络结构数据可视化

    准备工具: 1. 已编译好的pycaffe 2. Anaconda(python2.7) 3. graphviz 4. pydot  1. graphviz安装 graphviz是贝尔实验室开发的一个 ...

  9. 配置caffe中出现的问题汇总

    1,运行下面代码时: sudo apt-get install libopencv 出错: E: 无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系 原因: 源(source ...

随机推荐

  1. DOM基础----DOM(一)

    DOM(Document Object Model),中文名称为文档对象模型.是处理可扩展标识语言的标准编程接口,主要针对HTML和XML.DOM描绘了一个层次化的节点树,开发者能够加入.改动和移除页 ...

  2. CXF WebService中传递复杂对象(List、Map、Array)

    转自:https://wenku.baidu.com/view/047ce58ed0d233d4b14e69eb.html 现在开始介绍传递复杂类型的对象.如JavaBean.Array.List.M ...

  3. php如何判断两个时间戳是一天

    $date1 = getdate(strtotime('2013-12-31')); $date11 = getdate(strtotime('2014-01-01')); $date2 = getd ...

  4. 剑指offer——05用两个栈实现队列(Python3)

    思路:(转) 代码: # -*- coding:utf-8 -*-class Solution: stack1 = [] stack2 = [] def push(self, node): self. ...

  5. 方括号在sqlserver中的作用

    我也很无奈啊... 竟然还有这个技能...建个表试试? 显然不行... 再检查下表结构吧 前方小前辈有点坑... selelct [group] from tablle   可以了√ 应该是把[方括号 ...

  6. 子线程创建AlertDialog错误

    Can't create handler inside thread that has not called Looper.prepare()

  7. [oracle] 组织架构退格显示 connect by

    1. 按组织架构关系退格显示 create or replace view v_vieworg asselect --v.OBJID,v.OBJNAMElevel as levelid, lpad(' ...

  8. RocketMQ学习笔记(12)----RocketMQ的Consumer API简介

    由于消息的消费方式有两种,所以两种方式也有不同的API: 1. PushConsumer的配置 1. consumerGroup: 默认值为DEFAULT_CONSUMER,Consumer组名,多个 ...

  9. ZBrush中移动笔刷介绍

    移动笔刷是ZBrush®笔刷中举足轻重的一项,利用移动笔刷可以实现移动顶点的功能,还能改变模型的某一个点和某一位置.本文内容向大家介绍ZBrush®中移动笔刷以便大家熟悉它的用法和特性. 移动笔刷 可 ...

  10. js 时间戳 中国标准时间 年月日 日期之间的转换

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...