Coin Toss

Time Limit: 3000ms
Memory Limit: 131072KB

This problem will be judged on UVA. Original ID: 10328
64-bit integer IO format: %lld      Java class name: Main

 

Toss is an important part of any event. When everything becomes equal toss is the ultimate decider. Normally a fair coin is used for Toss. A coin has two sides head(H) and tail(T). Superstition may work in case of choosing head or tail. If anyone becomes winner choosing head he always wants to choose head. Nobody believes that his winning chance is 50-50. However in this problem we will deal with a fair coin and n times tossing of such a coin. The result of such a tossing can be represented by a string. Such as if 3 times tossing is used then there are possible 8 outcomes.

HHH HHT HTH HTT THH THT TTH TTT

As the coin is fair we can consider that the probability of each outcome is also equal. For simplicity we can consider that if the same thing is repeated 8 times we can expect to get each possible sequence once.

The Problem

In the above example we see 1 sequnce has 3 consecutive H, 3 sequence has 2 consecutive H and 7 sequence has at least single H. You have to generalize it. Suppose a coin is tossed n times. And the same process is repeated 2^n times. How many sequence you will get which contains a consequnce of H of length at least k.

The Input

The input will start with two positive integer, n and k (1<=k<=n<=100). Input is terminated by EOF.

The Output

For each test case show the result in a line as specified in the problem statement.

Sample Input

4 1
4 2
4 3
4 4
6 2

Sample Output

15
8
3
1
43

解题:解题思路跟zoj 3747 一样

dp[i][0] 表示连续u个正面 且第i个是正面的方案数

需要注意的是 这道题目是需要用大数的,也就是需要高精度

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define MAXN 100
struct HP {
int len,s[MAXN];
HP() {
memset(s,,sizeof(s));
len=;
}
HP operator =(const char *num) { //字符串赋值
len=strlen(num);
for(int i=; i<len; i++) s[i]=num[len-i-]-'';
} HP operator =(int num) { //int 赋值
char s[MAXN];
sprintf(s,"%d",num);
*this=s;
return *this;
} HP(int num) {
*this=num;
} HP(const char*num) {
*this=num;
} string str()const { //转化成string
string res="";
for(int i=; i<len; i++) res=(char)(s[i]+'')+res;
if(res=="") res="";
return res;
} HP operator +(const HP& b) const {
HP c;
c.len=;
for(int i=,g=; g||i<max(len,b.len); i++) {
int x=g;
if(i<len) x+=s[i];
if(i<b.len) x+=b.s[i];
c.s[c.len++]=x%;
g=x/;
}
return c;
}
void clean() {
while(len > && !s[len-]) len--;
} HP operator *(const HP& b) {
HP c;
c.len=len+b.len;
for(int i=; i<len; i++)
for(int j=; j<b.len; j++)
c.s[i+j]+=s[i]*b.s[j];
for(int i=; i<c.len-; i++) {
c.s[i+]+=c.s[i]/;
c.s[i]%=;
}
c.clean();
return c;
} HP operator - (const HP& b) {
HP c;
c.len = ;
for(int i=,g=; i<len; i++) {
int x=s[i]-g;
if(i<b.len) x-=b.s[i];
if(x>=) g=;
else {
g=;
x+=;
}
c.s[c.len++]=x;
}
c.clean();
return c;
}
HP operator / (const HP &b) {
HP c, f = ;
for(int i = len-; i >= ; i--) {
f = f*;
f.s[] = s[i];
while(f>=b) {
f =f-b;
c.s[i]++;
}
}
c.len = len;
c.clean();
return c;
}
HP operator % (const HP &b) {
HP r = *this / b;
r = *this - r*b;
return r;
} HP operator /= (const HP &b) {
*this = *this / b;
return *this;
} HP operator %= (const HP &b) {
*this = *this % b;
return *this;
} bool operator < (const HP& b) const {
if(len != b.len) return len < b.len;
for(int i = len-; i >= ; i--)
if(s[i] != b.s[i]) return s[i] < b.s[i];
return false;
} bool operator > (const HP& b) const {
return b < *this;
} bool operator <= (const HP& b) {
return !(b < *this);
} bool operator == (const HP& b) {
return !(b < *this) && !(*this < b);
}
bool operator != (const HP &b) {
return !(*this == b);
}
HP operator += (const HP& b) {
*this = *this + b;
return *this;
}
bool operator >= (const HP &b) {
return *this > b || *this == b;
} }; istream& operator >>(istream &in, HP& x) {
string s;
in >> s;
x = s.c_str();
return in;
} ostream& operator <<(ostream &out, const HP& x) {
out << x.str();
return out;
}
const int maxn = ;
HP dp[maxn][];//dp[i][0]表示第i个正
int n,k;
HP solve(int u){
dp[][] = ;
dp[][] = ;
for(int i = ; i <= n; ++i){
if(i <= u) dp[i][] = dp[i-][] + dp[i-][];
if(i == u + ) dp[i][] = dp[i-][] + dp[i-][] - ;
if(i > u + ) dp[i][] = dp[i-][] + dp[i-][] - dp[i - u - ][];
dp[i][] = dp[i-][] + dp[i-][];
}
return (dp[n][] + dp[n][]);
}
int main(){
while(~scanf("%d%d",&n,&k))
cout<<solve(n) - solve(k-)<<endl;
return ;
}

UVA 10328 Coin Toss的更多相关文章

  1. UVA 10328 - Coin Toss dp+大数

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  2. UVa 10328 - Coin Toss (递推)

    题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手.我们可以试着将问题转化一下. 设dp[i][j]表示抛掷i个硬币出现连续至多j个H ...

  3. UVa 10328 Coin Toss(Java大数+递推)

    https://vjudge.net/problem/UVA-10328 题意: 有H和T两个字符,现在要排成n位的字符串,求至少有k个字符连续的方案数. 思路:这道题目和ZOJ3747是差不多的,具 ...

  4. uva 10328 - Coin Toss 投硬币(dp递推,大数)

    题意:抛出n次硬币(有顺序),求至少k个以上的连续正面的情况的种数. 思路:转换成求抛n个硬币,至多k-1个连续的情况种数,用所有可能出现的情况种数减去至多k-1个的情况,就得到答案了.此题涉及大数加 ...

  5. UVA 674 Coin Change(dp)

    UVA 674  Coin Change  解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...

  6. UVA.674 Coin Change (DP 完全背包)

    UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...

  7. Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)

    有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...

  8. UVa 674 Coin Change【记忆化搜索】

    题意:给出1,5,10,25,50五种硬币,再给出n,问有多少种不同的方案能够凑齐n 自己写的时候写出来方案数老是更少(用的一维的) 后来搜题解发现,要用二维的来写 http://blog.csdn. ...

  9. UVA 674 Coin Change (DP)

    Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...

随机推荐

  1. luogu1273 有限电视网

    题目大意 有一棵有根树,每个结点有一个收益,每条边有一个花费.如果要选择一个叶子结点,则根节点到该叶子结点的路径上的所有结点都必须被选择.求当总收益大于等于总花费的情况下,最多能选择多少个叶子结点. ...

  2. bzoj1606[Usaco2008 Dec]Hay For Sale 购买干草(01背包)

    1606: [Usaco2008 Dec]Hay For Sale 购买干草 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1240  Solved: 9 ...

  3. Django day11(一) ajax 文件上传 提交json格式数据

    一: 什么是ajax? AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异步交互 ...

  4. 快速搭建ELK集中化日志管理平台

    由于我们的项目是分布式,服务分布于多个服务器上,每次查看日志都要登录不同服务器查看,而且查看起来还比较麻烦,老大让搭一个集中化日志管理的东西,然后就在网上找到了这个东西ELK ELK就是elastic ...

  5. supervisord 使用记录

    #supervisor简介 Supervisor是一个 Python 开发的 client/server 系统,可以管理和监控类 UNIX 操作系统上面的进程. #组成部分 supervisord(s ...

  6. 关于jquery的clone()和javascript的cloneNode()

    区别: jquery的clone( ),如果是true就是深克隆,把事件都会克隆过去:如果是false,则仅仅克隆的是结构: javascript的cloneNode( ),如果是true,会将子节点 ...

  7. React Component(dva)

    Stateless Functional Components(3种方式) class App extends React.Component function App() const App= Re ...

  8. angular js 球星

    <!DOCTYPE html>   <html lang="en">   <head>   <meta charset="UTF ...

  9. do…while语句

    有些情况下,不论条件是否满足,循环过程必须至少执行一次,这时可以采用do...while语句.就像如图7.4所示登录账号一样,需要先输入密码和账户名,后进行判断:如果密码始终不正确,则循环要求用户输入 ...

  10. Unity引擎GUI之Slider和Scrollbar

    Slider(滑动条):是一个主要用于形象的拖动以改变目标值的控件,他的最恰当应用是用来改变一个数值,最大值和最小值自定义,拖动滑块可在此之间改变,例如改变声音大小. Scrollbar(滚动条):是 ...