Fib数列2 bzoj-5118

题目大意:求Fib($2^n$)。

注释:$1\le n\le 10^{15}$。

想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定理就tm完事了,将fib数列的通项公式列出来然后费马小定理...

最后,附上丑陋的代码... ...(照着郭爷一顿瞎jb敲)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1125899839733759
typedef long long ll;
inline ll mul(ll x,ll y,ll p)
{
ll ans=0;
while(y)
{
if(y&1) ans=(ans+x)%p;
x=(x+x)%p,y>>=1;
}
return ans;
}
inline ll pow(ll x,ll y,ll p)
{
ll ans=1;
while(y)
{
if(y&1) ans=mul(ans,x,p);
x=mul(x,x,p),y>>=1;
}
return ans;
}
struct data
{
ll v[2][2];
data(){memset(v,0,sizeof(v));}
ll*operator [] (int a){return v[a];}
data operator * (data a)
{
data ans;
int i,j,k;
for(i=0;i<2;i++)
for(k=0;k<2;k++)
for(j=0;j<2;j++)
ans[i][j]=(ans[i][j]+mul(v[i][k],a[k][j],mod))%mod;
return ans;
}
data operator^(ll y)
{
data x=*this,ans;
ans[0][0]=ans[1][1]=1;
while(y)
{
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}
return ans;
}
}A;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
ll n;
scanf("%lld",&n),n=pow(2,n,mod-1);
A[0][0]=0,A[0][1]=A[1][0]=A[1][1]=1,A=A^n;
printf("%lld\n",A[1][0]);
}
return 0;
}

小结:好题

[bzoj5118]Fib数列2_费马小定理_矩阵乘法的更多相关文章

  1. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

  2. Fib数列2 费马小定理+矩阵乘法

    题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘

  3. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  4. BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ St ...

  5. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  6. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  7. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  8. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  9. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

随机推荐

  1. Android系统Recovery工作原理之使用update.zip升级过程分析(八)---解析并执行升级脚本updater-script【转】

    本文转载自:http://blog.csdn.net/mu0206mu/article/details/7465551  Android系统Recovery工作原理之使用update.zip升级过程分 ...

  2. 93.EXTJS Form之VTypes

    转自:http://blog.sina.com.cn/s/blog_7778950d0100y2pg.html 本文我们主要探讨一下EXTJS的Form中验证的问题,可能用过EXTJS的Form的人都 ...

  3. C++ this指针 全部

    在每一个成员函数中都包含一个特殊的指针,这个指针的名字是固定的.叫做this.它是指向本类对象的指针,它的值是当前被调用的成员函数所在的对象的起      始地址.例如:当调用成员函数a.volume ...

  4. hdu 3037Saving Beans(卢卡斯定理)

    Saving Beans Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  5. bzoj1143(2718)[CTSC2008]祭祀river(最长反链)

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2781  Solved: 1420[Submit][S ...

  6. 浅谈自学Python之路(购物车程序练习)

    购物车程序练习 今天我们来做一个购物车的程序联系,首先要理清思路 购物车程序需要用到什么知识点 需要用到哪些循环 程序编写过程中考虑值的类型,是int型还是字符串 如果值为字符串该怎么转成int型 用 ...

  7. Django day08 多表操作 (一) 多表模型创建

    多表模型创建分析:1)作者表:一个作者有姓名和年龄2)作者信息表: 有作者就有信息,点击作者的名字可以查询他的电话和地址, 作者表对应作者信息表,所以他们之间是一对一对的关系3)出版社表: 出版社有对 ...

  8. BZOJ 3681 线段树合并+网络流

    思路: 暴力建图有n*m条边 考虑怎么优化 (那就只能加个线段树了呗) 然后我就不会写了..... 抄了一波题解 //By SiriusRen #include <bits/stdc++.h&g ...

  9. MySQL 数据的增删改查

    一.数据库的增删改 一. 在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作,包括 1.使用INSERT实现数据的插入 2.UPDATE实现数据的更新 3.使用DELETE实现数 ...

  10. S - New Year Transportation

    Problem description New Year is coming in Line World! In this world, there are n cells numbered by i ...