HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007
上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想...
今年多校又出了这个...于是学习了一下平面内求最近点对的算法...算导上也给了详细的说明
虽然一看就知道直接用分治O(nlogn)的算法 , 但是平面内最近点对的算法复杂度证明我看了一天也没有完全看明白...
代码我已经做了一些优化...但肯定还能进一步优化..我是2s漂过的非常惭愧...(甚至优化以后时间还多了...不明白原因
/********************* Template ************************/
#include <set>
#include <map>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std; #define EPS 1e-8
#define MAXN (int)1e5+5
#define MOD (int)1e9+7
#define PI acos(-1.0)
#define INF (1<<30)
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max3(a,b,c) (max(max(a,b),c))
#define min3(a,b,c) (min(min(a,b),c))
#define BUG cout<<" BUG! "<<endl;
#define L(t) (t << 1)
#define R(t) (t << 1 | 1)
#define Mid(a,b) ((a + b) >> 1)
#define lowbit(a) (a & -a)
#define FIN freopen("out.txt","w",stdout)
#pragma comment (linker,"/STACK:102400000,102400000") // typedef long long LL;
// typedef unsigned long long ULL;
// typedef __int64 LL;
// typedef unisigned __int64 ULL;
// int gcd(int a,int b){ return b?gcd(b,a%b):a; }
// int lcm(int a,int b){ return a*b/gcd(a,b); } /********************* F ************************/
struct point
{
double x,y;
int pos;
point(double a = ,double b = ,int c = ){
x = a ; y = b ; pos = c;
}
}p[MAXN],tmp[MAXN];
int n ; bool cmp(point a,point b){
if(a.x == b.x) return a.y < b.y;
return a.x < b.x;
} bool cmp1(point a,point b){
return a.y < b.y;
}
double dist(point a ,point b){
return sqrt((double)((a.x-b.x) * (a.x-b.x) + (a.y-b.y) * (a.y-b.y)));
} /*
* 二维空间找最近点对
* 返回排序后点位置的pair<int,int>
*/
pair<int,int> Closest_Pair(int l ,int r){
if(l == r || l+ == r) return make_pair(l,r); //1个点,2个点 直接return;
int m = Mid(l,r); // (l+r)/2
pair<int,int> dl = Closest_Pair(l,m);
pair<int,int> dr = Closest_Pair(m+,r);
double ldis,rdis; //左部分的最值 右部分的最值
double ans_dis; //左中右三部分最值 if(dl.first == dl.second) ldis = INF; //判重
else ldis = dist(p[dl.first],p[dl.second]); if(dr.first == dr.second) rdis = INF;
else rdis = dist(p[dr.first],p[dr.second]); pair<int,int> ans = ldis < rdis ? dl : dr ; //左右两部分的最值点对
ans_dis = min(ldis,rdis); //左右两部分的最值 // 从中向左右两边找在[p[m].x-d,p[m].x+d]的平面内所有点
// 这以后的复杂度就不太好估计了...
// 这段模板是用暴力找的...我只做了一点点优化...
int cnt = ;
for(int i = m ; i >= l ; i--){
double q = sqrt((double)(p[m].x - p[i].x) * (p[m].x - p[i].x));
if(p[i].x < p[m].x - q) break;
if(q <= ans_dis){
tmp[cnt++] = p[i];
}
}
for(int i = m+ ; i <= r ; i++){
double q = sqrt((double)(p[m].x - p[i].x) * (p[m].x - p[i].x));
if(p[i].x > p[m].x + q) break;
if(q <= ans_dis){
tmp[cnt++] = p[i];
}
}
//按y方向进行筛选 ,相隔大于d的点可以直接跳过
sort(tmp,tmp+cnt,cmp1);
for(int i = ; i < cnt ; i++){
for(int j = i+ ; j < cnt ; j++){
if(sqrt((double)(tmp[i].y - tmp[j].y) * (tmp[i].y - tmp[j].y)) >= ans_dis)
break;
if(dist(tmp[i],tmp[j]) < ans_dis){
ans_dis = dist(tmp[i],tmp[j]);
ans = make_pair(tmp[i].pos,tmp[j].pos);
}
}
}
return ans;
}
int main()
{
//FIN;
while(cin>>n && n){
for(int i = ; i < n ; i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p,p+n,cmp);
for(int i = ; i < n ; i++)
p[i].pos = i;
pair<int,int> ans = Closest_Pair(,n-);
double res = dist(p[ans.first],p[ans.second]);
printf("%.2lf\n",res/);
}
return ;
}
HDU 1007 Quoit Design 平面内最近点对的更多相关文章
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design(计算几何の最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
- HDU 1007 Quoit Design | 平面分治
暂鸽 #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #d ...
- hdu 1007 Quoit Design 题解
原题地址 题目大意 查询平面内最近点对的距离,输出距离的一半. 暴力做法 枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时. 那么我们考虑去优化这一个过程,我们在求 ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design(平面最近点对)
题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...
随机推荐
- 一个工作快八年的老IT人士这几年沉浮总结的职场经验教训
曾经我挺喜欢写博客,认为把心中的想法表达出来非常畅快.而且还能和网上非常多人沟通交流,如今我更喜欢把想法留在心中.博客非常久没更新了,刚才闲来无事.看看职场话题版块发现非常多人都挺迷茫的,所以我写一些 ...
- JVM-java字符编码
在JVM内部,所有的字符都是用Unicode编码的.而对于JVM所在操作系统的文件系统,可能有不同的编码类型. 由于JVM和OS文件系统所使用的编码方式不同,JVM在与操作系统进行数据交互的时候,就会 ...
- BZOJ 3629 约数和定理+搜索
呃呃 看到了这道题 没有任何思路-- 百度了一发题解 说要用约数和定理 就查了一发 http://baike.so.com/doc/7207502-7432191.html (不会的可以先学习一下) ...
- OpenCV中InputArray和OutputArray使用方法
原文链接:http://blog.csdn.net/yang_xian521/article/details/7755101 看过OpenCV源代码的朋友,肯定都知道很多函数的接口都是InputArr ...
- 浅谈unicode编码和utf-8编码的关系
字符串编码在Python里边是经常会遇到的问题,特别是写文件以及网络传输的过程中,当调用某些函数的时候经常会遇到一些字符串编码提示错误,所以有必要弄清楚这些编码到底在搞什么鬼. 我们都知道计算机只能处 ...
- 在Windows下如何创建虚拟环境(默认情况下)
很多小伙伴平时在使用Python的时候,有的项目需要使用Python2来进行开发,有的项目则是需要Python3来进行开发.当不清楚怎么分开环境的时候,此时两个环境开始打架,彼此傻傻分不清楚.虚拟环境 ...
- DEDE 修改后台图集上传单个图片的大小限制
默认情况下,DEDE图集中单个图片大小限制在2M以内,而有时我们需要上传一个2M以上的文件,这是只要修改几个文件就可以实现了. 一.需要修改php.ini这个文件,我们必须保证PHP的配置中允许上传一 ...
- 学习《零基础入门学习Python》电子书PDF+笔记+课后题及答案
初学python入门建议学习<零基础入门学习Python>.适合新手入门,很简单很易懂.前一半将语法,后一半讲了实际的应用. Python3入门必备,小甲鱼手把手教授Python,包含电子 ...
- JS 中 this 与闭包的结合产生的问题
代码片段一: var name = "The Window"; var object = { name : "My Object", getNameFunc : ...
- VIjos——V 1782 借教室 | | 洛谷——P1083 借教室
https://vijos.org/p/1782|| https://www.luogu.org/problem/show?pid=1083 描述 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...