HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007
上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想...
今年多校又出了这个...于是学习了一下平面内求最近点对的算法...算导上也给了详细的说明
虽然一看就知道直接用分治O(nlogn)的算法 , 但是平面内最近点对的算法复杂度证明我看了一天也没有完全看明白...
代码我已经做了一些优化...但肯定还能进一步优化..我是2s漂过的非常惭愧...(甚至优化以后时间还多了...不明白原因
/********************* Template ************************/
#include <set>
#include <map>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std; #define EPS 1e-8
#define MAXN (int)1e5+5
#define MOD (int)1e9+7
#define PI acos(-1.0)
#define INF (1<<30)
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max3(a,b,c) (max(max(a,b),c))
#define min3(a,b,c) (min(min(a,b),c))
#define BUG cout<<" BUG! "<<endl;
#define L(t) (t << 1)
#define R(t) (t << 1 | 1)
#define Mid(a,b) ((a + b) >> 1)
#define lowbit(a) (a & -a)
#define FIN freopen("out.txt","w",stdout)
#pragma comment (linker,"/STACK:102400000,102400000") // typedef long long LL;
// typedef unsigned long long ULL;
// typedef __int64 LL;
// typedef unisigned __int64 ULL;
// int gcd(int a,int b){ return b?gcd(b,a%b):a; }
// int lcm(int a,int b){ return a*b/gcd(a,b); } /********************* F ************************/
struct point
{
double x,y;
int pos;
point(double a = ,double b = ,int c = ){
x = a ; y = b ; pos = c;
}
}p[MAXN],tmp[MAXN];
int n ; bool cmp(point a,point b){
if(a.x == b.x) return a.y < b.y;
return a.x < b.x;
} bool cmp1(point a,point b){
return a.y < b.y;
}
double dist(point a ,point b){
return sqrt((double)((a.x-b.x) * (a.x-b.x) + (a.y-b.y) * (a.y-b.y)));
} /*
* 二维空间找最近点对
* 返回排序后点位置的pair<int,int>
*/
pair<int,int> Closest_Pair(int l ,int r){
if(l == r || l+ == r) return make_pair(l,r); //1个点,2个点 直接return;
int m = Mid(l,r); // (l+r)/2
pair<int,int> dl = Closest_Pair(l,m);
pair<int,int> dr = Closest_Pair(m+,r);
double ldis,rdis; //左部分的最值 右部分的最值
double ans_dis; //左中右三部分最值 if(dl.first == dl.second) ldis = INF; //判重
else ldis = dist(p[dl.first],p[dl.second]); if(dr.first == dr.second) rdis = INF;
else rdis = dist(p[dr.first],p[dr.second]); pair<int,int> ans = ldis < rdis ? dl : dr ; //左右两部分的最值点对
ans_dis = min(ldis,rdis); //左右两部分的最值 // 从中向左右两边找在[p[m].x-d,p[m].x+d]的平面内所有点
// 这以后的复杂度就不太好估计了...
// 这段模板是用暴力找的...我只做了一点点优化...
int cnt = ;
for(int i = m ; i >= l ; i--){
double q = sqrt((double)(p[m].x - p[i].x) * (p[m].x - p[i].x));
if(p[i].x < p[m].x - q) break;
if(q <= ans_dis){
tmp[cnt++] = p[i];
}
}
for(int i = m+ ; i <= r ; i++){
double q = sqrt((double)(p[m].x - p[i].x) * (p[m].x - p[i].x));
if(p[i].x > p[m].x + q) break;
if(q <= ans_dis){
tmp[cnt++] = p[i];
}
}
//按y方向进行筛选 ,相隔大于d的点可以直接跳过
sort(tmp,tmp+cnt,cmp1);
for(int i = ; i < cnt ; i++){
for(int j = i+ ; j < cnt ; j++){
if(sqrt((double)(tmp[i].y - tmp[j].y) * (tmp[i].y - tmp[j].y)) >= ans_dis)
break;
if(dist(tmp[i],tmp[j]) < ans_dis){
ans_dis = dist(tmp[i],tmp[j]);
ans = make_pair(tmp[i].pos,tmp[j].pos);
}
}
}
return ans;
}
int main()
{
//FIN;
while(cin>>n && n){
for(int i = ; i < n ; i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p,p+n,cmp);
for(int i = ; i < n ; i++)
p[i].pos = i;
pair<int,int> ans = Closest_Pair(,n-);
double res = dist(p[ans.first],p[ans.second]);
printf("%.2lf\n",res/);
}
return ;
}
HDU 1007 Quoit Design 平面内最近点对的更多相关文章
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design(计算几何の最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
- HDU 1007 Quoit Design | 平面分治
暂鸽 #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #d ...
- hdu 1007 Quoit Design 题解
原题地址 题目大意 查询平面内最近点对的距离,输出距离的一半. 暴力做法 枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时. 那么我们考虑去优化这一个过程,我们在求 ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design(平面最近点对)
题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...
随机推荐
- uva 104 Arbitrage (DP + floyd)
uva 104 Arbitrage Description Download as PDF Background The use of computers in the finance industr ...
- TRIZ系列-创新原理-7-嵌套原理
原理表述例如以下: 1)把一个物体嵌入另外一个物体.然后将这两个物体再嵌入第三个物体,以此类推. 这个原理又叫俄罗斯娃原理,目的是在不影响原有功能的情况下: A) 在须要时.能够降低系统的体积和便于携 ...
- hdoj--2955--Robberies(背包好题)
Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- BZOJ 3781 莫队
思路:不能再裸的裸题-- //By SiriusRen #include <cmath> #include <cstdio> #include <algorithm> ...
- 深入理解Android(5)——从MediaScanner分析Android中的JNI
前面几篇介绍了Android中的JNI和基本用法,这一篇我们通过分析Android源代码中的JNI实例,来对JNI部分做一个总结. 一.通向两个不同世界的桥梁 在前面我们说过,JNI就像一个桥梁,将J ...
- js创建dom操作select
document.getElementById("column-left").getElementsByTagName("header")[0].onclick ...
- 常用sql语句及案例
目录 1)基本 2)数学函数 3)rownum 4)分页 5)时间处理 6)字符函数 7)to_number 8)聚合函数 9)学生选课 10)图书馆借阅 基本 --新建表: create table ...
- ES6学习笔记(九)Set和Map数据结构
1.set 基本等于Java的Set集合类型,无序不可重复集,常被用来去重. 基本用法 const s = new Set();//通过Set()构造函数创建 [2, 3, 5, 4, 5, 2, 2 ...
- vue抽取公共方法———方法一
方法一:Vue插件 1.概述 作用:满足vue之外的需求,特定场景的需求 比如说,让你在每个单页面组件里,都可以调用某个方法(公共方法),或者共享某个变量等 2.使用方法 [声明插件]- [写插件]- ...
- 【Codeforces Round #459 (Div. 2) A】Eleven
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 这个数列增长很快的. 直接暴力模拟看看是不是它的一项就好了 [代码] #include <bits/stdc++.h> ...