最小树形图裸题,只是须要记录路径

E. Road Repairs
time limit per test

2 seconds

memory limit per test

256 megabytes

input

input.txt

output

output.txt

A country named Berland has n cities. They are numbered with integers from 1 to n.
City with index 1 is the capital of the country. Some pairs of cities have monodirectional roads built between them. However, not all of them
are in good condition. For each road we know whether it needs repairing or not. If a road needs repairing, then it is forbidden to use it. However, the Berland government can repair the road so that it can be used.

Right now Berland is being threatened by the war with the neighbouring state. So the capital officials decided to send a military squad to each city. The squads can move only along the existing roads, as there's no time or money to build new roads. However,
some roads will probably have to be repaired in order to get to some cities.

Of course the country needs much resources to defeat the enemy, so you want to be careful with what you're going to throw the forces on. That's why the Berland government wants to repair the minimum number of roads that is enough for the military troops to
get to any city from the capital, driving along good or repaired roads. Your task is to help the Berland government and to find out, which roads need to be repaired.

Input

The first line contains two space-separated integers n and m (1 ≤ n, m ≤ 105) —
the number of cities and the number of roads in Berland.

Next m lines contain three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai ≠ bi, 0 ≤ ci ≤ 1),
describing the road from city ai to
city bi.
If ci equals 0,
than the given road is in a good condition. If ci equals 1,
then it needs to be repaired.

It is guaranteed that there is not more than one road between the cities in each direction.

Output

If even after all roads are repaired, it is still impossible to get to some city from the capital, print  - 1. Otherwise, on the first line
print the minimum number of roads that need to be repaired, and on the second line print the numbers of these roads, separated by single spaces.

The roads are numbered starting from 1 in the order, in which they are given in the input.

If there are multiple sets, consisting of the minimum number of roads to repair to make travelling to any city from the capital possible, print any of them.

If it is possible to reach any city, driving along the roads that already are in a good condition, print 0 in the only output line.

Sample test(s)
input
3 2
1 3 0
3 2 1
output
1
2
input
4 4
2 3 0
3 4 0
4 1 0
4 2 1
output
-1
input
4 3
1 2 0
1 3 0
1 4 0
output
0

/* ***********************************************
Author :CKboss
Created Time :2015年07月07日 星期二 22时48分41秒
File Name :CF240E.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; const int INF=0x3f3f3f3f;
const int maxn=2001000; int n,m; struct Edge
{
int u,v,cost,id,ru,rv,rcost;
}edge[maxn]; void add_Edge(int id,int u,int v,int c)
{
edge[id].id=id;
edge[id].u=edge[id].ru=u;
edge[id].v=edge[id].rv=v;
edge[id].cost=edge[id].rcost=c;
} int pre[maxn],id[maxn],vis[maxn],in[maxn]; //// !!!!
int preid[maxn],useE[maxn];
int eA[maxn],eD[maxn];
int ex; int zhuliu(int root,int n,int m,Edge edge[])
{
int ex=m,res=0;
while(true)
{
for(int i=0;i<n;i++) in[i]=INF;
for(int i=0;i<m;i++)
{
if(edge[i].u!=edge[i].v&&edge[i].cost<in[edge[i].v])
{
pre[edge[i].v]=edge[i].u;
in[edge[i].v]=edge[i].cost; //// !!!!
preid[edge[i].v]=edge[i].id;
}
}
for(int i=0;i<n;i++)
if(i!=root&&in[i]==INF) return -1;
int tn=0;
memset(id,-1,sizeof(id));
memset(vis,-1,sizeof(vis));
in[root]=0;
for(int i=0;i<n;i++)
{
res+=in[i];
int v=i;
//// !!!!
if(i!=root) useE[preid[i]]++;
while(vis[v]!=i&&id[v]==-1&&v!=root)
{
vis[v]=i; v=pre[v];
}
if(v!=root&&id[v]==-1)
{
for(int u=pre[v];u!=v;u=pre[u]) id[u]=tn;
id[v]=tn++;
}
}
if(tn==0) break;
for(int i=0;i<n;i++)
if(id[i]==-1) id[i]=tn++;
for(int i=0;i<m;i++)
{
int v=edge[i].v;
edge[i].u=id[edge[i].u];
edge[i].v=id[edge[i].v];
if(edge[i].u!=edge[i].v)
{
edge[i].cost-=in[v];
//// !!!!
eA[ex]=edge[i].id;
eD[ex]=preid[v];
edge[i].id=ex;
ex++;
}
}
n=tn;
root=id[root];
} //// !!!!
for(int i=ex-1;i>=m;i--)
{
if(useE[i])
{
useE[eA[i]]++; useE[eD[i]]--;
}
} return res;
} int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout); scanf("%d%d",&n,&m); for(int i=0,a,b,c;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
a--; b--;
add_Edge(i,a,b,c);
} int lens = zhuliu(0,n,m,edge); if(lens==0||lens==-1) { printf("%d\n",lens); return 0; } printf("%d\n",lens);
for(int i=0;i<m;i++)
{
if(useE[i]&&edge[i].rcost)
printf("%d ",i+1);
}
putchar(10); return 0;
}

Codeforces 240E. Road Repairs 最小树形图+输出路径的更多相关文章

  1. CF240E Road Repairs(最小树形图-记录路径)

    A country named Berland has n cities. They are numbered with integers from 1 to n. City with index 1 ...

  2. hdu 5092 线裁剪(纵向连线最小和+输出路径)

    http://acm.hdu.edu.cn/showproblem.php?pid=5092 给一个m*n的矩阵,找到一个纵向的"线"使得线上的和最小并输出这条线,线能向8个方向延 ...

  3. codeforce 240E 最小树形图+路径记录更新

    最小树形图的路径是在不断建立新图的过程中更新的,因此需要开一个结构体cancle记录那些被更新的边,保存可能会被取消的边和边在旧图中的id 在朱刘算法最后添加了一个从后往前遍历新建边的循环,这可以理解 ...

  4. Codeforces Gym-102219 2019 ICPC Malaysia National E. Optimal Slots(01背包+输出路径)

    题意:给你一个体积为\(T\)的背包,有\(n\)个物品,每个物品的价值和体积都是是\(a_{i}\),求放哪几个物品使得总价值最大,输出它们,并且输出价值的最大值. 题解:其实就是一个01背包输出路 ...

  5. HDU 2121 Ice_cream’s world II 不定根最小树形图

    题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  6. HDU 3251 Being a Hero(最小割+输出割边)

    Problem DescriptionYou are the hero who saved your country. As promised, the king will give you some ...

  7. 【BZOJ 2753】 2753: [SCOI2012]滑雪与时间胶囊 (分层最小树形图,MST)

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2457  Solved: 859 Descriptio ...

  8. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

  9. HDU 2121——Ice_cream’s world II——————【最小树形图、不定根】

    Ice_cream’s world II Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. Web端本地存储

    1.需求背景:当用户在页面上添加一行一行的数据时,突然发现网络断掉了,页面上编辑的数据没法保存进数据库,所以需要一个本地端的临时保存功能,以便在网络通畅后重新加载出来! 2.解决方案: 结合网上搜刮, ...

  2. php中的页面跳转和重定向

    php中的页面跳转和重定向 ThinkPHP中跳转和重定向的区别 跳转: 浏览器认为: 当前URL请求成功, 重新请求新的URL. 浏览器会 记录当前的URL 和 新的URL 在请求历史记录中. 回退 ...

  3. Spring Boot: Tuning your Undertow application for throughput--转

    原文地址:https://jmnarloch.wordpress.com/2016/04/26/spring-boot-tuning-your-undertow-application-for-thr ...

  4. bootstrap-treeview简单使用

    废话不多说,直接上干干货. 1.bootstrap-treeview Github网址:https://github.com/jonmiles/bootstrap-treeview 2.使用要求: & ...

  5. DefaultView 的作用(对DataSet查询出的来数据进行排序)

    DefaultView 的作用 收藏    一直以来在对数据进行排序, 条件查询都是直接重复构建SQL来进行, 在查询次数和数据量不多的情况下倒没觉得什么, 但慢慢得, 当程序需要对大量数据椐不同条件 ...

  6. 使用 init-runonce脚本创建一个 openstack云项目

    source /etc/kolla/admin-openrc.sh cd /usr/share/kolla-ansible ./init-runonce 报错内容 Traceback (most re ...

  7. POJ——T 1988 Cube Stacking

    http://poj.org/problem?id=1988 Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 25865   ...

  8. 10 hbase源码系列(十)HLog与日志恢复

    hbase源码系列(十)HLog与日志恢复   HLog概述 hbase在写入数据之前会先写入MemStore,成功了再写入HLog,当MemStore的数据丢失的时候,还可以用HLog的数据来进行恢 ...

  9. hdu 1005 Number Sequence(矩阵连乘+二分快速求幂)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1005 代码: #include<iostream> #include<stdio.h&g ...

  10. Controller接口控制器

    1.Controller简介 Controller控制器,是MVC中的部分C,为什么是部分呢?因为此处的控制器主要负责功能处理部分: 1.收集.验证请求参数并绑定到命令对象: 2.将命令对象交给业务对 ...