DLX精确覆盖.....模版题

Sudoku
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8336   Accepted: 2945

Description

In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,

. 2 7 3 8 . . 1 .
. 1 . . . 6 7 3 5
. . . . . . . 2 9
3 . 5 6 9 2 . 8 .
. . . . . . . . .
. 6 . 1 7 4 5 . 3
6 4 . . . . . . .
9 5 1 8 . . . 7 .
. 8 . . 6 5 3 4 .

Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.

Input

The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used
to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.

Output

For each test case, print a line representing the completed Sudoku puzzle.

Sample Input

.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
end

Sample Output

527389416819426735436751829375692184194538267268174593643217958951843672782965341
416837529982465371735129468571298643293746185864351297647913852359682714128574936

Source

[

problem_id=3074" style="text-decoration:none">Submit]   [Go Back]  
[Status]   [Discuss]

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int N=9;
const int maxn=N*N*N+10;
const int maxm=N*N*4+10;
const int maxnode=maxn*4+maxm+10; char sudoku[maxn]; struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],L[maxnode],R[maxnode],Row[maxnode],Col[maxnode];
int H[maxnode],S[maxnode];
int ansd,ans[maxn];
void init(int _n,int _m)
{
n=_n; m=_m;
for(int i=0;i<=m;i++)
{
S[i]=0;
U[i]=D[i]=i;
L[i]=i-1;
R[i]=i+1;
}
R[m]=0; L[0]=m;
size=m;
for(int i=1;i<=n;i++) H[i]=-1;
}
void Link(int r,int c)
{
++S[Col[++size]=c];
Row[size]=r;
D[size]=D[c];
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0) H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
}
void remove(int c)
{
L[R[c]]=L[c]; R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
}
void resume(int c)
{
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
L[R[c]]=R[L[c]]=c;
}
bool Dance(int d)
{
if(R[0]==0)
{
for(int i=0;i<d;i++) sudoku[(ans[i]-1)/9]=(ans[i]-1)%9+'1';
printf("%s\n",sudoku);
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
if(S[i]<S[c]) c=i;
remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];
for(int j=R[i];j!=i;j=R[j]) remove(Col[j]);
if(Dance(d+1)) return true;
for(int j=L[i];j!=i;j=L[j]) resume(Col[j]);
}
resume(c);
return false;
}
}; DLX dlx; void place(int& r,int& c1,int& c2,int& c3,int& c4,int i,int j,int k)
{
r=(i*N+j)*N+k;
c1=i*N+j+1;
c2=N*N+N*i+k;
c3=N*N*2+N*j+k;
c4=N*N*3+((i/3)*3+(j/3))*N+k;
} int main()
{
while(scanf("%s",sudoku)!=EOF)
{
if(sudoku[2]=='d') break;
dlx.init(N*N*N,N*N*4);
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
for(int k=1;k<=N;k++)
{
if(sudoku[i*N+j]=='.'||sudoku[i*N+j]==k+'0')
{
int r,c1,c2,c3,c4;
place(r,c1,c2,c3,c4,i,j,k);
dlx.Link(r,c1);
dlx.Link(r,c2);
dlx.Link(r,c3);
dlx.Link(r,c4);
}
}
}
}
dlx.Dance(0);
}
return 0;
}

POJ 3074 Sudoku DLX精确覆盖的更多相关文章

  1. (简单) POJ 3074 Sudoku, DLX+精确覆盖。

    Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgr ...

  2. POJ 3076 Sudoku DLX精确覆盖

    DLX精确覆盖模具称号..... Sudoku Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 4416   Accepte ...

  3. (简单) POJ 3076 Sudoku , DLX+精确覆盖。

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  4. POJ 3074 Sudoku (DLX)

    Sudoku Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  5. (中等) HDU 4069 Squiggly Sudoku , DLX+精确覆盖。

    Description Today we play a squiggly sudoku, The objective is to fill a 9*9 grid with digits so that ...

  6. 【转】DLX 精确覆盖 重复覆盖

    问题描述: 给定一个n*m的矩阵,有些位置为1,有些位置为0.如果G[i][j]==1则说明i行可以覆盖j列. Problem: 1)选定最少的行,使得每列有且仅有一个1. 2)选定最少的行,使得每列 ...

  7. (简单) HUST 1017 Exact cover , DLX+精确覆盖。

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  8. poj3074 DLX精确覆盖

    题意:解数独 分析: 完整的数独有四个充要条件: 1.每个格子都有填数字 2.每列都有1~9中的每个数字 3.每行都有1~9中的每个数字 4.每个9宫格都有1~9中的每个数字 可以转化成精确覆盖问题. ...

  9. DLX精确覆盖与重复覆盖模板题

    hihoCoder #1317 : 搜索四·跳舞链 原题地址:http://hihocoder.com/problemset/problem/1317 时间限制:10000ms 单点时限:1000ms ...

随机推荐

  1. 微信小程序开发入门(一)

     小程序学习入门--(一) 最近自己学习微信小程序的过程当中自己总结出来的知识点,我会不断地更新和完善! 小程序的开发工具 一台电脑 熟悉HTML.CSS.JS基本语法 开发工具: 微信web开发者工 ...

  2. js如何实现php的in_array()

    var arr = [ 4, "Pete", 8, "John" ]; jQuery.inArray("John", arr); //3 j ...

  3. MyBatis学习总结(4)——解决字段名与实体类属性名不相同的冲突

    一.准备演示需要使用的表和数据 CREATE TABLE orders( order_id INT PRIMARY KEY AUTO_INCREMENT, order_no VARCHAR(20), ...

  4. 洛谷——T P2136 拉近距离

    https://www.luogu.org/problem/show?pid=2136 题目背景 我是源点,你是终点.我们之间有负权环. ——小明 题目描述 在小明和小红的生活中,有N个关键的节点.有 ...

  5. jquery简直是太酷炫强大了

    链接地址:http://www.yyyweb.com/350.html Web 开发中很实用的10个效果[源码下载] 小鱼 发布于 3年前 (2014-07-15) 分类:前端开发 阅读(303741 ...

  6. Android ToolBar 的简单封装

    使用过 ToolBar 的朋友肯定对其使用方法不陌生,由于其使用方法非常easy.假设对 ActionBar 使用比較熟练的人来说.ToolBar 就更easy了!只是,相信大家在使用的过程中都遇到过 ...

  7. 计算机网络 4.网络层与IP协议

    网络中的每一台主机和路由器都有一个网络层部分.而路由器中也没有网络层以上的层次.网络层是协议栈中最复杂的层次. 转发forwarding:当一个分组到达某路由器的输入链路时.该路由器将分组移动到适当的 ...

  8. 解决linux ping: unknown host www.baidu.com

    如果ping域名的时候出现ping:unknown host  xxx.xxx 但是ping IP地址的时候可以通的话 可知是dns服务器没有配置好, 查看一下配置文件/etc/resolv.conf ...

  9. POJ 3342 树形DP+Hash

    这是很久很久以前做的一道题,可惜当时WA了一页以后放弃了. 今天我又重新捡了起来.(哈哈1A了) 题意: 没有上司的舞会+判重 思路: hash一下+树形DP 题目中给的人名hash到数字,再进行运算 ...

  10. Linux mount挂载umount卸载

    mount/umount挂载/卸载 对于Linux用户来讲,不论有几个分区,分别分给哪一个目录使用,它总归就是一个根目录.一个独立且唯一的文件结构 Linux中每个分区都是用来组成整个文件系统的一部分 ...