Problem Description

After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 

Input

Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 

Output

For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 

Sample Input

5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 

Sample Output

Not connected
6

Hint

Hint

Huge input, scanf recommended.

#include <iostream>
#include <vector>
#include <stack>
#include <cstring>
#include <cstdio>
#include <memory.h>
#include<vector>
using namespace std;
int Laxt[],Next[],To[],Len[];
int Laxt2[],Next2[],To2[],ans[];
bool vis[];
int cnt,cnt2;
int dis[],fa[];
void _update()
{
memset(Laxt,-,sizeof(Laxt));
memset(Laxt2,-,sizeof(Laxt2));
memset(vis,false,sizeof(vis));
cnt=cnt2=;
}
void _add(int u,int v,int d){
Next[cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
Len[cnt++]=d;
}
void _add2(int u,int v){
Next2[cnt2]=Laxt2[u];
Laxt2[u]=cnt2;
To2[cnt2++]=v;
Next2[cnt2]=Laxt2[v];
Laxt2[v]=cnt2;
To2[cnt2++]=u;
}
int _findfa(int v){
if(v==fa[v]) return fa[v];
return fa[v]=_findfa(fa[v]);
}
void _tarjan(int v)
{
vis[v]=true;fa[v]=v;
for(int i=Laxt[v];i!=-;i=Next[i]){
if(!vis[To[i]]){
dis[To[i]]=dis[v]+Len[i];
_tarjan(To[i]);
fa[To[i]]=v;
}
}
for(int i=Laxt2[v];i!=-;i=Next2[i]){
if(vis[To2[i]]){
int tmp=_findfa(To2[i]);
if(dis[To2[i]]!=-)
ans[i/]=dis[v]+dis[To2[i]]-*dis[tmp];
else ans[i/]=-;
}
}
}
int main()
{
int n,m,c,i,x,y,z;
while(~scanf("%d %d %d",&n,&m,&c)){
_update();
for(i=;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
_add(x,y,z);
_add(y,x,z);
}
for(i=;i<c;i++){
scanf("%d%d",&x,&y);
_add2(x,y);
}
for(i=;i<=n;i++){
if(!vis[i]){
memset(dis,-,sizeof(dis));
dis[i]=;
_tarjan(i);
}
}
for(i=;i<c;i++)
if(ans[i]==-) printf("Not connected\n");
else printf("%d\n",ans[i]);
}
return ;
}

HDU2874 LCA Tarjan的更多相关文章

  1. hdu2874(lca / tarjan离线 + RMQ在线)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意: 给出 n 个顶点 m 条边的一个森林, 有 k 个形如 x y 的询问, 输出 x, ...

  2. HDU 2874 Connections between cities(LCA Tarjan)

    Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...

  3. POJ 1986 Distance Queries(LCA Tarjan法)

    Distance Queries [题目链接]Distance Queries [题目类型]LCA Tarjan法 &题意: 输入n和m,表示n个点m条边,下面m行是边的信息,两端点和权,后面 ...

  4. LCA Tarjan方法

    LCA Tarjan方法 不得不说,高中生好厉害,OI大佬,感觉上个大学好憋屈啊! 说多了都是眼泪 链接拿去:http://www.cnblogs.com/JVxie/p/4854719.html

  5. LCA tarjan+并查集POJ1470

    LCA tarjan+并查集POJ1470 https://www.cnblogs.com/JVxie/p/4854719.html 不错的一篇博客啊,让我觉得LCA这么高大上的算法不是很难啊,嘻嘻嘻 ...

  6. hihoCoder #1067 : 最近公共祖先·二 [ 离线LCA tarjan ]

    传送门: #1067 : 最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站 ...

  7. hdu-2874 Connections between cities(lca+tarjan+并查集)

    题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others)     Memory Limit: 32768/327 ...

  8. hdu2874 LCA

    题意:现在有 n 个点与 m 条边的无向无环图,但是图不一定完全连通,边有各自的边权,给出多组询问,查询两点之间的路径权值和,或者输出两点不连通. 一开始有最短路的想法,但是由于询问有 1e6 组,做 ...

  9. LA 5061 LCA tarjan 算法

    题目大意: 给定所有点的权值都为0,给定一棵树以后,每次询问都要求给定两点 x , y 和一个权值w,要求x,y路径上所有点权值加上w,最后求出每一个节点的值 这里因为查询和点都特别多,所以希望能最后 ...

随机推荐

  1. Android学习记录:线程

    在Java中,线程的建立方法如下. 新建一个类,接口Runnable,重载 run方法 import javax.swing.JTextField; public class test impleme ...

  2. 验证Oracle收集统计信息参数granularity数据分析的力度

    最近在学习Oracle的统计信息这一块,收集统计信息的方法如下: DBMS_STATS.GATHER_TABLE_STATS ( ownname VARCHAR2, ---所有者名字 tabname ...

  3. 201521123061 《Java程序设计》第十一周学习总结

    201521123061 <Java程序设计>第十一周学习总结 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 本周学习的是如何解决多线程访问中的互斥 ...

  4. 201521123106 《Java程序设计》第7周学习总结

    1. 本章学习总结 2. 书面作业 Q1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 答: ArrayList的contains源代码为: public boo ...

  5. 201521123006 《Java程序设计》第6周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰,内容覆盖 ...

  6. 解决"应用程序无法启动,因为应用程序的并行配置不正确"问题

    想必不少人都会遇到题目中的问题.我在一次和舍友一起重装系统的时候变遇到了上述的问题, 经过仔细分析发现电脑会出现上述问题所必要的条件 系统中没有存在合理的运行库文件 所运行的软件是之前重装系统之间留下 ...

  7. Java课程设计 学生基本信息管理系统 团队博客

    学生基本信息管理系统团队博客 项目git地址 https://git.oschina.net/Java_goddess/kechengsheji 项目git提交记录截图 项目功能架构图与主要功能流程图 ...

  8. 一步步带你做vue后台管理框架(三)——登录功能

    系列教程<一步步带你做vue后台管理框架>第三课 github地址:vue-framework-wz 线上体验地址:立即体验 <一步步带你做vue后台管理框架>第一课:介绍框架 ...

  9. WebUtils复用代码【request2Bean、UUID】

    request封装到Bean对象 public static <T> T request2Bean(HttpServletRequest httpServletRequest, Class ...

  10. Servlet学习应该注意的几点

    一.Servlet生命周期(即运行过程) (1)初始阶段,调用init()方法 (2)响应客户请求阶段,调用service()方法.由service()方法根据提交方式不同执行doGet()或doPo ...