Spark术语
1.resilient distributed dataset (RDD)
The core programming abstraction in Spark, consisting of a fault-tolerant collection of elements that can be operated on in parallel.
2.partition
A subset of the elements in an RDD. Partitions define the unit of parallelism;
Spark processes elements within a partition in sequence and multiple partitions in parallel.
When Spark reads a file from HDFS, it creates a single partition for a single input split.
It returns a single partition for a single block of HDFS (but the split between partitions is on line split, not the block split), unless you have a compressed text file.
In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).
3.application
A job, sequence of jobs, or a long-running service issuing new commands as needed or an interactive exploration session.
4.application JAR
A JAR containing a Spark application. In some cases you can use an "Uber" JAR containing your application along with its dependencies.
The JAR should never include Hadoop or Spark libraries, however, these will be added at runtime.
5.cluster manager
An external service for acquiring resources on the cluster: Spark Standalone or YARN.
6.job
A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action.
7.task
A unit of work on a partition of a distributed dataset. Also referred to as a stage.
8.driver
Process that represents the application session.
The driver is responsible for converting the application to a directed graph of individual steps to execute on the cluster.
There is one driver per application.
9.executor
A process that serves a Spark application.
An executor runs multiple tasks over its lifetime, and multiple tasks concurrently.
A host may have several Spark executors and there are many hosts running Spark executors for each application.
10.deploy mode
Identifies where the driver process runs.
In client mode, the submitter launches the driver outside of the cluster.
In cluster mode, the framework launches the driver inside the cluster.
Client mode is simpler, but cluster mode allows you to log out after starting a Spark application without terminating the application.
12.Spark Standalone
A model of running Spark applications in which a Master daemon coordinates the efforts of Worker daemons, which run the executors.
13.Spark on YARN
A model of running Spark applications in which the YARN ResourceManager performs the functions of the Spark Master.
The functions of the Workers are performed by the YARN NodeManagers, which run the executors.
14.ApplicationMaster
A YARN role responsible for negotiating resource requests made by the driver and finding a set of containers in which to run the Spark application.
There is one ApplicationMaster per application.
Spark术语的更多相关文章
- Spark入门实战系列--1.Spark及其生态圈简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...
- 【Todo】【读书笔记】大数据Spark企业级实战版 & Scala学习
下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的S ...
- RDD机制实现模型Spark初识
Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性. 在Spark中,通过RDD( ...
- 【DataMagic】如何在万亿级别规模的数据量上使用Spark
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...
- spark学习笔记_1
简单的讲,Apache Spark是一个快速且通用的集群计算系统. Apache Spark 历史: 2009年由加州伯克利大学的AMP实验室开发,并在2010年开源,13年时成长为Apache旗下大 ...
- 通过分区(Partitioning)提高Spark的运行性能
在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何 ...
- Spark之 spark简介、生态圈详解
来源:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介Spark是加州大学伯克利分校AMP实验室(Algorithm ...
- spark 图文详解:资源调度和任务调度
讲说spark的资源调度和任务调度,基本的spark术语,这里不再多说,懂的人都懂了... 按照数字顺序阅读,逐渐深入理解:以下所有截图均为个人上传,不知道为什么总是显示别人的QQ,好尴尬,无所谓啦, ...
- 如何在万亿级别规模的数据量上使用Spark
一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...
随机推荐
- yaml在python中的应用简单整理
#简单介绍============================================================== YAML使用寄主语言的数据类型,这在多种语言中流传的时候可能会引 ...
- 转贴---Performance Counter(包含最全的Windows计数器解释)
http://support.smartbear.com/viewarticle/55773/ 这个Article中介绍了一个新工具,TestComplete,把其中涉及到性能计数器的部分摘抄出来了. ...
- Liunx find的运用
find命令 一.根据 -name 查找 find[搜索范围][搜索条件] find /root -name a1 若是模糊查询,则使用通配符 *匹配任意字符{find /root -name &qu ...
- 如何管理Session(防止恶意共享账号)——理论篇
目录 知识要求 背景 技术原理 如何管理Session remember me的问题 附录 知识要求 有一定的WEB后端开发基础,熟悉Session的用法,以及与Redis.Database的配合 本 ...
- eclipse自定义代码模板
eclipse自定义代码模板 Eclipse 提供了非常多的代码模板,我们可以通过 Windows->Preferences->Java->Editor->Templates ...
- 学习MySQL(下)
具体实例 22.MySQL ALTER命令 当我们需要修改数据表名或者修改数据表字段时,就需要使用到MySQL ALTER命令. 1.如果需要修改数据表的名称,可以在 ALTER TABLE 语句中使 ...
- Less的转义字符
Less的转义字符 有时候,当需要引入无效的CSS语法或Less不能识别的字符,就需要使用转义字符.此时,就可以在字符串前面加一个 ~,并将需要转义的字符串放在 "" 中.格式为: ...
- CYQ.Data 正式支持 DotNET Core 版本发布
闲话几句: 自从上周开始,IOS人员逝去,就开始接手IOS的代码了. 并开始整理IOS的代码(包括当时一开始设计的开发框架). 在未来不远的日子里,设想是有一个系列详细的介绍I恋App和IT连App及 ...
- haproxy1.7编译安装配置
#haproxy1.7编译安装配置#高可用.负载均衡 使用 #haproxy1.7编译安装配置 #centos7 x86_64 #高可用.负载均衡 使用 #下载 #http://www.haproxy ...
- (高级篇)php结合redis实现高并发下的抢购、秒杀功能
抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存 ...