1.resilient distributed dataset (RDD)

The core programming abstraction in Spark, consisting of a fault-tolerant collection of elements that can be operated on in parallel.

2.partition

A subset of the elements in an RDD. Partitions define the unit of parallelism;

Spark processes elements within a partition in sequence and multiple partitions in parallel.

When Spark reads a file from HDFS, it creates a single partition for a single input split.

It returns a single partition for a single block of HDFS (but the split between partitions is on line split, not the block split), unless you have a compressed text file.

In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).

3.application

A job, sequence of jobs, or a long-running service issuing new commands as needed or an interactive exploration session.

4.application JAR

A JAR containing a Spark application. In some cases you can use an "Uber" JAR containing your application along with its dependencies.

The JAR should never include Hadoop or Spark libraries, however, these will be added at runtime.

5.cluster manager

An external service for acquiring resources on the cluster: Spark Standalone or YARN.

6.job

A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action.

7.task

A unit of work on a partition of a distributed dataset. Also referred to as a stage.

8.driver

Process that represents the application session.

The driver is responsible for converting the application to a directed graph of individual steps to execute on the cluster.

There is one driver per application.

9.executor

A process that serves a Spark application.

An executor runs multiple tasks over its lifetime, and multiple tasks concurrently.

A host may have several Spark executors and there are many hosts running Spark executors for each application.

10.deploy mode

Identifies where the driver process runs.

In client mode, the submitter launches the driver outside of the cluster.

In cluster mode, the framework launches the driver inside the cluster.

Client mode is simpler, but cluster mode allows you to log out after starting a Spark application without terminating the application.

12.Spark Standalone

A model of running Spark applications in which a Master daemon coordinates the efforts of Worker daemons, which run the executors.

13.Spark on YARN

A model of running Spark applications in which the YARN ResourceManager performs the functions of the Spark Master.

The functions of the Workers are performed by the YARN NodeManagers, which run the executors.

14.ApplicationMaster

A YARN role responsible for negotiating resource requests made by the driver and finding a set of containers in which to run the Spark application.

There is one ApplicationMaster per application.

Spark术语的更多相关文章

  1. Spark入门实战系列--1.Spark及其生态圈简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...

  2. 【Todo】【读书笔记】大数据Spark企业级实战版 & Scala学习

    下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的S ...

  3. RDD机制实现模型Spark初识

    Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性.       在Spark中,通过RDD( ...

  4. 【DataMagic】如何在万亿级别规模的数据量上使用Spark

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...

  5. spark学习笔记_1

    简单的讲,Apache Spark是一个快速且通用的集群计算系统. Apache Spark 历史: 2009年由加州伯克利大学的AMP实验室开发,并在2010年开源,13年时成长为Apache旗下大 ...

  6. 通过分区(Partitioning)提高Spark的运行性能

    在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何 ...

  7. Spark之 spark简介、生态圈详解

    来源:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介Spark是加州大学伯克利分校AMP实验室(Algorithm ...

  8. spark 图文详解:资源调度和任务调度

    讲说spark的资源调度和任务调度,基本的spark术语,这里不再多说,懂的人都懂了... 按照数字顺序阅读,逐渐深入理解:以下所有截图均为个人上传,不知道为什么总是显示别人的QQ,好尴尬,无所谓啦, ...

  9. 如何在万亿级别规模的数据量上使用Spark

    一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...

随机推荐

  1. bootstrap导航栏.nav与.navbar区别

    刚刚看了bootstrap的导航栏,发现有点弄混了,现在来整理一下: 一.简单的ul,li组成的导航: <ul class="nav nav-pills justify-content ...

  2. jvm内存区域与内存溢出

    java内存 java动态运行时区域包括:方法区.虚拟机栈.本地方法栈.堆.程序计数器,如右图所示:   程序计数器 程序计数器用来标识要执行的代码的行号,为线程私有   虚拟机栈 为线程所私有 虚拟 ...

  3. 开源纯C#工控网关+组态软件(六)图元组件

    一.   图元概述 图元是构成人机界面的基本单元.如一个个的电机.设备.数据显示.仪表盘,都是图元.构建人机界面的过程就是铺排.挪移.定位图元的过程. 图元设计是绘图和编码的结合.因为图元不仅有显示和 ...

  4. JavaWeb框架SSH_Struts2_(三)

    1. Struts2的拦截器(使用拦截器实现权限控制) 拦截器简介 拦截器概述 拦截器工作原理 拦截器的配置 Struts2的内建拦截器 内建拦截器的介绍 内建拦截器的配置 自定义拦截器 实现自定义拦 ...

  5. Python中的单例模式

    在 Python 中,我们可以用多种方法来实现单例模式: 使用模块 使用 __new__ 使用装饰器(decorator) 使用元类(metaclass) # mysingleton.py class ...

  6. Java基础回顾(3)

    数组:用一种数据类型的集合 ★数组元素下标从0开始. 数组的复制.扩容: ①.System.arraycopy(源数组, 源数组的初始下标,                     目标数组, 目标数 ...

  7. 微信官方团队放出了UI库,看来以后前端还要学WeChatUI了,哈哈

    已经在github上发布,网址如下:https://github.com/weui/weui

  8. git的CentOS服务端安装和windows客户端的使用

    git的CentOS服务端安装和windows客户端的使用 此教程以 搬瓦工vps CentOS 6 x64 的系统为环境,搭建 git 服务端.windows 7 系统为客户端. git客户端 在W ...

  9. PHP获取路径或目录实现

    <?php /**  * PHP获取路径或目录实现  */    //魔术变量,获取当前文件的绝对路径 echo "__FILE__: ========> ".__FI ...

  10. 基于TCP协议的socket编程

    什么是socket Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面, ...