1.resilient distributed dataset (RDD)

The core programming abstraction in Spark, consisting of a fault-tolerant collection of elements that can be operated on in parallel.

2.partition

A subset of the elements in an RDD. Partitions define the unit of parallelism;

Spark processes elements within a partition in sequence and multiple partitions in parallel.

When Spark reads a file from HDFS, it creates a single partition for a single input split.

It returns a single partition for a single block of HDFS (but the split between partitions is on line split, not the block split), unless you have a compressed text file.

In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).

3.application

A job, sequence of jobs, or a long-running service issuing new commands as needed or an interactive exploration session.

4.application JAR

A JAR containing a Spark application. In some cases you can use an "Uber" JAR containing your application along with its dependencies.

The JAR should never include Hadoop or Spark libraries, however, these will be added at runtime.

5.cluster manager

An external service for acquiring resources on the cluster: Spark Standalone or YARN.

6.job

A parallel computation consisting of multiple tasks that gets spawned in response to a Spark action.

7.task

A unit of work on a partition of a distributed dataset. Also referred to as a stage.

8.driver

Process that represents the application session.

The driver is responsible for converting the application to a directed graph of individual steps to execute on the cluster.

There is one driver per application.

9.executor

A process that serves a Spark application.

An executor runs multiple tasks over its lifetime, and multiple tasks concurrently.

A host may have several Spark executors and there are many hosts running Spark executors for each application.

10.deploy mode

Identifies where the driver process runs.

In client mode, the submitter launches the driver outside of the cluster.

In cluster mode, the framework launches the driver inside the cluster.

Client mode is simpler, but cluster mode allows you to log out after starting a Spark application without terminating the application.

12.Spark Standalone

A model of running Spark applications in which a Master daemon coordinates the efforts of Worker daemons, which run the executors.

13.Spark on YARN

A model of running Spark applications in which the YARN ResourceManager performs the functions of the Spark Master.

The functions of the Workers are performed by the YARN NodeManagers, which run the executors.

14.ApplicationMaster

A YARN role responsible for negotiating resource requests made by the driver and finding a set of containers in which to run the Spark application.

There is one ApplicationMaster per application.

Spark术语的更多相关文章

  1. Spark入门实战系列--1.Spark及其生态圈简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .简介 1.1 Spark简介 年6月进入Apache成为孵化项目,8个月后成为Apache ...

  2. 【Todo】【读书笔记】大数据Spark企业级实战版 & Scala学习

    下了这本<大数据Spark企业级实战版>, 另外还有一本<Spark大数据处理:技术.应用与性能优化(全)> 先看前一篇. 根据书里的前言里面,对于阅读顺序的建议.先看最后的S ...

  3. RDD机制实现模型Spark初识

    Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性.       在Spark中,通过RDD( ...

  4. 【DataMagic】如何在万亿级别规模的数据量上使用Spark

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...

  5. spark学习笔记_1

    简单的讲,Apache Spark是一个快速且通用的集群计算系统. Apache Spark 历史: 2009年由加州伯克利大学的AMP实验室开发,并在2010年开源,13年时成长为Apache旗下大 ...

  6. 通过分区(Partitioning)提高Spark的运行性能

    在Sortable公司,很多数据处理的工作都是使用Spark完成的.在使用Spark的过程中他们发现了一个能够提高Sparkjob性能的一个技巧,也就是修改数据的分区数,本文将举个例子并详细地介绍如何 ...

  7. Spark之 spark简介、生态圈详解

    来源:http://www.cnblogs.com/shishanyuan/p/4700615.html 1.简介 1.1 Spark简介Spark是加州大学伯克利分校AMP实验室(Algorithm ...

  8. spark 图文详解:资源调度和任务调度

    讲说spark的资源调度和任务调度,基本的spark术语,这里不再多说,懂的人都懂了... 按照数字顺序阅读,逐渐深入理解:以下所有截图均为个人上传,不知道为什么总是显示别人的QQ,好尴尬,无所谓啦, ...

  9. 如何在万亿级别规模的数据量上使用Spark

    一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...

随机推荐

  1. 掌握numpy(三)

    统计功能 前面都是介绍numpy的一些特性,被称为数学运算神器怎么能少了统计功能呢 ndarray的方法 a = np.array([[-2.5, 3.1, 7], [10, 11, 12]]) &g ...

  2. Linux命令学习备忘

    格式:   命令:原理:实践及截图 1.su <user> 执行该命令,需要输入password,它是<user>中定义的用户的password,即,要变换成的用户的passw ...

  3. SDRAM操作(FPGA实现)

    对SDRAM基本概念的介绍以及芯片手册说明,请参考上一篇文章SDRAM操作说明. 1. 说明 如图所示为状态机的简化图示,过程大概可以描述为:SDRAM(IS42S16320D)上电初始化完成后,进入 ...

  4. JavaScript高级程序设计之自学笔记(一)————Array类型

    以下为自学笔记. 一.Array类型 创建数组的基本方式有两种: 1.1第一种是使用Array构造函数(可省略new操作符). 1.2第二种是使用数组字面量表示法. 二.数组的访问 2.1访问方法 在 ...

  5. JavaWeb面试(七)

    61,JDBC访问数据库的基本步骤是什么?1,加载驱动2,通过DriverManager对象获取连接对象Connection3,通过连接对象获取会话4,通过会话进行数据的增删改查,封装对象5,关闭资源 ...

  6. Python [习题] 求最长共同子串

    s1 = 'abcdefg's2 = 'defabcdoabcdeftw's3 = '1234a's4 = 'wqweshjkb's5 = 'defabcd's6 = 'j' 求 s1.s3.s4.s ...

  7. Swarm 如何实现 Failover?- 每天5分钟玩转 Docker 容器技术(98)

    故障是在所难免的,容器可能崩溃,Docker Host 可能宕机,不过幸运的是,Swarm 已经内置了 failover 策略. 创建 service 的时候,我们没有告诉 swarm 发生故障时该如 ...

  8. "MySql.Data.MySqIClient.MySqlProviderSevices”违反了继承安全 性规则。派生类型必须与基类型的安全可访问性匹配或者比基类型的安 全可访问性低。 "解决方法

    写Code First 时(使用的是MySql数据库),添加好EntityFrame.MySql.Data .MySql.Data.Entity后 ,写好TestDbContext类. 运行时报出一个 ...

  9. F - Capture

    F - Capture 题链 题意 给你两种颜色的物品,有n组,每组有第一种颜色有w个,第二种为d个,每组必须选一种,求最后第一种颜色占的比值不低于K的最少需要选第一种的组数. 思路 首先没组都选第一 ...

  10. 多线程编程 - PHP 实现

    * { color: #3e3e3e } body { font-family: "Helvetica Neue", Helvetica, "Hiragino Sans ...