https://www.luogu.org/problem/show?pid=1073

如果他想在i点卖出,那么就要在从1点出发到i点的路径里找个最便宜的买入,用Bellman-Ford求出这样最便宜的买入价记为minp[i]。他能获得的利润就是price[i]-minp[i]。

但是并不是可以在所有的点都可以卖出,因为他最终要走到N,所以只有在和N联通的点才能卖出。用从N点出发倒着的DFS/BFS记录点i是否能到达N点。

故答案为max{price[i]-minp[i] (i点与N点联通)}

#include <iostream>
#include <vector>
#include <queue>
#define maxn 100005
using namespace std;
const int inf = ;
int n, m, price[maxn];
vector<int> g[maxn], gt[maxn]; int minp[maxn];
bool inque[maxn];
queue<int> q;
void bellman_ford()
{
for (int i = ; i <= n; i++)
minp[i] = inf;
minp[] = price[];
q.push();
inque[] = true;
while (!q.empty())
{
int v = q.front();
q.pop();
inque[v] = false;
for (int i = ; i < g[v].size(); i++)
{
int w = g[v][i];
if (minp[w] > min(minp[v], price[w]))
{
minp[w] = min(minp[v], price[w]);
if (!inque[w])
{
inque[w] = true;
q.push(w);
}
}
}
}
} bool avai[maxn];
void dfs(int v)
{
avai[v] = true;
for (int i = ; i < gt[v].size(); i++)
{
int w = gt[v][i];
if (!avai[w])
dfs(w);
}
} int main()
{
ios::sync_with_stdio(false);
cin >> n >> m;
for (int i = ; i <= n; i++)
cin >> price[i];
int u, v, z;
for (int i = ; i <= m; i++)
{
cin >> u >> v >> z;
g[u].push_back(v);
gt[v].push_back(u);
if (z == )
{
g[v].push_back(u);
gt[u].push_back(v);
}
} bellman_ford();
dfs(n);
int ans = ;
for (int i = ; i <= n; i++)
{
if (avai[i])
ans = max(ans, price[i] - minp[i]);
}
cout << ans << endl;
return ;
}

【NOIP2009提高组】最优贸易的更多相关文章

  1. [NOIP2009提高组]最优贸易

    题目:洛谷P1073.Vijos P1754.codevs1173. 题目大意:有n点m边的图,边分有向和无向.每个点有一个价格,用这个价格可以买入或卖出一个东西.一个人从1出发,要到n,途中可以买入 ...

  2. P1073 [NOIP2009 提高组] 最优贸易 (最短路spfa)

    本题就是在一条1-n的路径上找p,q(先经过p),使得q-p最大. 考虑建正反图,正图上求出d[x],表示1-x的路径经过的节点最小值,反图上则从n开始求出f[x],x-n的最大值,最后枚举断点i,取 ...

  3. 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)

    传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...

  4. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  5. Noip2009提高组总结

    Noip2009的题目还是有一定难度的,主要是搜索和最短路都是我的弱项,不检查第一遍下来只做了150分,还是这句话,素质和读题的仔细程度决定了分数.仔细想想,我们化学老师说的话没错,或许题目你都会做, ...

  6. noip2009提高组解题报告

    NOIP2009潜伏者 题目描述 R 国和S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动. 历尽艰险后,潜伏于 S 国的R 国间谍小C 终于摸清了S 国军用密码的编码规则: 1. S 国 ...

  7. noip2009提高组题解

    NOIP2009题解 T1:潜伏者 题目大意:给出一段密文和破译后的明文,一个字母对应一个密文字母,要求破译一段密文,如果有矛盾或有未出现密文无法破译输出failed,否则输出明文. 思路:纯模拟题 ...

  8. [NOIP2009] 提高组 洛谷P1071 潜伏者

    题目描述 R 国和 S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动.历尽艰险后,潜伏于 S 国的 R 国间谍小 C 终于摸清了 S 国军用密码的编码规则: 1. S 国军方内部欲发送的原 ...

  9. [NOIP2009] 提高组 洛谷P1074 靶形数独

    题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教, Z 博士拿出了他最近发明的 ...

  10. [NOIP2009] 提高组 洛谷P1072 Hankson 的趣味题

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

随机推荐

  1. Vim 神器的打造方式

    Vim 神器的打造方式     [字体:大 中 小]   Vim 是一个上古神器,本篇文章主要持续总结使用 Vim 的过程中不得不了解的一些指令和注意事项,以及持续分享一个前端工作者不得不安装的一些插 ...

  2. Muduo阅读笔记---入门(一)

    第一步:下载源码和文档 下载muduo项目的源码.<muduo-manual.pdf>文档,以及<Linux多线程服务端编程:使用muduo C++网络库.pdf>,这些是前期 ...

  3. Here We Go(relians) Again

    Here We Go(relians) Again Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...

  4. C#语言支持的特性,.NET却不支持,那么C#不被.NET支持的部分又是如何在.NET上运行的呢?

    阅读<C#高级编程>系列丛书中,介绍C#与.NET的关系,提到C#是语言,.NET是平台(C#不是.NET的一部分),说".NET支持的一些特性,C#并不支持",这个可 ...

  5. Log4j 2翻译 Garbage-free Steady State Logging(稳定的以不会生成垃圾的状态来记录日志)

    本人菜鸟,在学习Log4j 2 的时候做的一些笔记---对"官方网站"的翻译,部分内容自己也不懂,希望大家指点 Garbage collection pauses are a co ...

  6. SSH框架的多表查询和增删查改 (方法一)中

    原创作品,允许转载,转载时请务必标明作者信息和声明本文章==>http://www.cnblogs.com/zhu520/p/7774144.html   这边文章是接的刚刚前一遍的基础上敲的  ...

  7. mybatis映射异常

    今天写项目突然遇到了这么个问题:  nested exception is org.apache.ibatis.reflection.ReflectionException: There is no  ...

  8. SharePoint Online 创建用户和组

    前言 本文介绍如何在Office 365中创建用户和组,这里所说的用户和组,是指Office 365中的用户和组,我们可以用这里的用户登录Office 365环境,用组的概念来管理用户,而非Share ...

  9. 4. ZooKeeper 基本操作

    ZooKeeper的数据模型及其API支持以下九个基本操作: 操作 描述 create 在ZooKeeper命名空间的指定路径中创建一个znode delete 从ZooKeeper命名空间的指定路径 ...

  10. MacOS 下安装mysqlclient 的问题及解决办法

    [操作环境] 操作系统:MacOS X 10.13.1 mysql运行环境:Docker Docker版本:17.09-ce 在开发Django时,刚开始使用的sqlite进行开发,想部署到生产环境需 ...