The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 964    Accepted Submission(s): 393

Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 
Input
The rst line has a number T (T <= 10) , indicating the number of test cases.
For each test case, first line has a single number N (N <= 300), which is the number of points.
For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
 
Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 
Sample Input
2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0
 
Sample Output
Case #1: 1.00 0.00
Case #2: 1.00 1.00
 
 #include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define eps 0.000001
typedef struct abcd
{
double x,y,vx,vy;
} point;
point p[];
int n;
double dis(double tt,int x,int y)
{
double xx=p[x].x+tt*p[x].vx;
double yy=p[x].y+tt*p[x].vy;
double xx1=p[y].x+tt*p[y].vx;
double yy1=p[y].y+tt*p[y].vy;
return sqrt((xx-xx1)*(xx-xx1)+(yy-yy1)*(yy-yy1));
}
double funa(double tt)
{
int i,j;
double maxa=;
for(i=;i<n;i++)
{
for(j=i+;j<n;j++)
{
maxa=max(maxa,dis(tt,i,j));
}
}
//cout<<tt<<endl;
return maxa;
}
double fun()
{
double l=,r=,m1,m2;
while(r-l>eps)
{
m1=l+(r-l)/;
m2=r-(r-l)/;
if(funa(m1)<funa(m2))
{
r=m2;
}
else l=m1;
}
return l;
}
int main()
{
int t,i,j,k;
scanf("%d",&t);
for(i=; i<=t; i++)
{
scanf("%d",&n);
for(j=; j<n; j++)
{
scanf("%lf%lf%lf%lf",&p[j].x,&p[j].y,&p[j].vx,&p[j].vy);
}
double yyy=fun();
printf("Case #%d: %.2lf %.2lf\n",i,yyy,funa(yyy));
}
}

The Moving Points hdu4717的更多相关文章

  1. HDU-4717 The Moving Points(凸函数求极值)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDOJ 4717 The Moving Points

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. HDU 4717The Moving Points warmup2 1002题(三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDU 4717 The Moving Points (三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. HDUOJ---The Moving Points

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  7. ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  8. hdu4717 The Moving Points(二分做法)

    这道题看了大家都是用三分做的,其实这道题也是可以用二分来做的,就是利用一下他们的单调性. 对于N个点,总共要考虑N(N+1)/2个距离,距离可以用二次函数表示,而且开口都是向上的. 下面具体说一下二分 ...

  9. hdu4717 The Moving Points 三分法

    题意:坐标系上有n个点,每个点的坐标和移动方向速度告诉你,速度方向都是固定的.然后要求一个时刻,使得这个时刻,这些点中最远的距离最小. 做法:三分法,比赛的时候想不到.考虑两个点,如果它们走出来的路径 ...

随机推荐

  1. 【搬运工】之YSlow安装教程

    YSlow安装教程(我只是搬运工,推荐好用的地址) 地址: https://devework.com/yslow.html YSlow (解析为 why slow)是雅虎基于网站优化规则推出的工具,帮 ...

  2. CPU和GPU的差别

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt317 首先需要解释CPU和GPU这两个缩写分别代表什么.CPU即中央处理器, ...

  3. 如何使用Git和码云Git@OSC

    1.Git简介 关于Git是什么,阅读博客Git简介 2.Git 基础 Git命令很多,常用命令如下图 Workspace:工作区 Index/Stage :暂存区 Local Repository: ...

  4. 英语app分析

    Andorid 版本 第一部分 调研, 评测 搜索了一下必应跑出来的是微软必应,在印象中微软的产品都是很可靠地.安装之后对它的 排版字体图片等不是很喜欢,感觉有道词典会更亲切一点. 必应       ...

  5. 201521123104 《Java程序设计》第6周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 2. 书面作业 1. clone方法 1.1 Object ...

  6. 201521123111《Java程序设计》第5周学习总结

    1. 本章学习总结 你对于本章知识的学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 1.2 可选:使用常规方法总结其他上课内容. 2. 书面作业 1.代码阅读:Child压缩包内源代码 ...

  7. 201521123088《JAVA程序设计》第5周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 2. 书面作业 阅读:Child压缩包内源代码 1.1 com.parent包中Child.java文件能否编译通过?哪句会出 ...

  8. 201521123054 《Java程序设计》 第2周学习总结

    本周学习总结 能够利用jdk文档处理实验问题: 动态数组的学习: 书面作业 1.使用Eclipse关联jdk源代码,并查看String对象的源代码(截图)?分析String使用什么来存储字符串的?分析 ...

  9. Python IDLE快捷键一览

    编辑状态时:Ctrl + [ .Ctrl + ] 缩进代码Alt+3 Alt+4 注释.取消注释代码行Alt+5 Alt+6 切换缩进方式 空格<=>TabAlt+/ 单词完成,只要文中出 ...

  10. 201521123100 《Java程序设计》第9周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 1.本次PTA作业题集异常 常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己 ...