SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧.
现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。
Sprague-Grundy定理(SG定理):
游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。
SG函数:
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
【实例】取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推.....
x 0 1 2 3 4 5 6 7 8....
SG[x] 0 1 0 1 2 3 2 0 1....
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
代码实现如下:
//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = ; i <= n; i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,,sizeof(S));
for(j = ; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = ; //将后继状态的SG函数值进行标记
for(j = ;; j++) if(!S[j]){ //查询当前后继状态SG值中最小的非零值
SG[i] = j;
break;
}
}
}
现在我们来一个实战演练(题目链接):
只要按照上面的思路,解决这个就是分分钟的问题。
代码如下:
#include <stdio.h>
#include <string.h>
#define MAXN 1000 + 10
#define N 20
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,,sizeof(SG));
for(i = ; i <= n; i++){
memset(S,,sizeof(S));
for(j = ; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = ;
for(j = ;;j++) if(!S[j]){
SG[i] = j;
break;
}
}
}
int main(){
int n,m,k;
f[] = f[] = ;
for(int i = ; i <= ; i++)
f[i] = f[i-] + f[i-];
getSG();
while(scanf("%d%d%d",&m,&n,&k),m||n||k){
if(SG[n]^SG[m]^SG[k]) printf("Fibo\n");
else printf("Nacci\n");
}
return ;
}
大家是不是还没有过瘾,那我就在给大家附上一些组合博弈的题目:
POJ 2234 Matches Game
HOJ 4388 Stone Game II
POJ 2975 Nim
HOJ 1367 A Stone Game
POJ 2505 A multiplication game
ZJU 3057 beans game
POJ 1067 取石子游戏
POJ 2484 A Funny Game
POJ 2425 A Chess Game
POJ 2960 S-Nim
POJ 1704 Georgia and Bob
POJ 1740 A New Stone Game
POJ 2068 Nim
POJ 3480 John
POJ 2348 Euclid's Game
HOJ 2645 WNim
POJ 3710 Christmas Game
POJ 3533 Light Switching Game
SG函数和SG定理【详解】的更多相关文章
- (转载)--SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- 组合游戏 - SG函数和SG定理
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- SG函数和SG定理(Sprague_Grundy)
一.必胜点和必败点的概念 P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质: ...
- PHP函数call_user_func和call_user_func_array详解
今天在群里面,有个叫lewis的在问call_user_func_array的用法,因为之前一直没有用过,也不能说什么,于是看一下手册,发现是这么写的: call_user_func_array (P ...
- JS函数动作分层结构详解及Document.getElementById 释义 js及cs数据类型区别 事件 函数 变量 script标签 var function
html +css 静态页面 js 动态 交互 原理: js就是修改样式, 比如弹出一个对话框. 弹出的过程就是这个框由disable 变成display:enable. 又或者当鼠标指向 ...
- WordPress函数:get_bloginfo()用法详解
描述 返回你博客的信息,这些信息可以用在任何地方的 PHP 代码中.这个函数,和 bloginfo() 一样,可以用来在模板文件的任何地方显示你博客的信息. 用法 <?php $bloginfo ...
- Wordpress菜单函数wp_nav_menu各参数详解及示例
Wordpress菜单函数wp_nav_menu各参数详解及示例 注册菜单 首先要注册菜单,将以下函数添加至function.php函数里 register_nav_menus(array( ...
- Delphi Format函数功能及用法详解
DELPHI中Format函数功能及用法详解 DELPHI中Format函数功能及用法详解function Format(const Format: string; const Args: array ...
- SG函数和SG定理
Fibonacci again and again 利用SG函数求出每一堆的SG值,如果三个值的异或和为零 先手必败态,否则,先手必胜态. #include <bits/stdc++.h> ...
随机推荐
- iOS各框架功能简述以及系统层次结构简单分析
iOS各个框架所对应的功能简单介绍 iOS系统结构层次:
- .NET产品源码保护,.NET防止反编译,c#/vb.net 防反编译
.NET产品源码保护产生的背景: .NET源码加密方案支持C#及VB.NET等语言开发的ASP.NET及WINFORM应用.利用.NET支持托管代码与非托管代码共存的特性,将C#代码经过处理放于非托管 ...
- java异常处理机制(try-catch-finally)
/* * 异常处理机制 * 1.分类:Error和Exception * Error错误是JVM自动报错的,程序员无法解决例如开数组过大int a[]=new int [1024*1024*1024] ...
- .NET遇上Docker - Docker集成Cron定时运行.NETCore(ConsoleApp)程序.md
配置项目的Docker支持 对于VS中Docker的配置,依旧重复一些废话. 给项目添加Docker支持,VS2015可以直接使用Docker for VS插件,VS2017在安装时选择容器支持.VS ...
- java接收数据接口
1.数据接收接口: 这个可以考虑最简单的Servlet方法,而且效率较高: import java.io.PrintWriter;import java.text.SimpleDateFormat;i ...
- 磁盘IO:缓存IO与直接IO
文件系统IO分为DirectIO和BufferIO,其中BufferIO也叫Normal IO. 1. 缓存IO 缓存I/O又被称作标准I/O,大多数文件系统的默认I/O操作都是缓存I/O.在Linu ...
- 转Fiddler 构造http请求
今天使用Fiddler构造一个POST请求,server端的PHP脚本的 $_POST数组中怎么也获取不到值,后来偶然发现是因为缺少了一个http头:Content-Type: application ...
- PHP获取Post的原始数据方法小结(POST无变量名)
From : http://blog.csdn.net/hotdigger/article/details/6456240 一般我们都用$_POST或$_REQUEST两个预定义变量来接收POST ...
- IE报vuex requires a Promise polyfill in this browser问题解决
使用Vuex, IE浏览器报错 因为使用了 ES6 中用来传递异步消息的的Promise,而IE低版本的浏览器不支持. ##解决方法 第一步: 安装 babel-polyfill . babel-po ...
- Unity 消息发送机制 解析
该博客,只为解析,解析,解析,已经整理好,已经整理好,已经整理好.代码核心原理套用网上最流行的那一套,也是最常用游戏开发适用的消息机制.这里面加上自己的一些优化,极大的修正(哈哈),实测,没问题.万一 ...