[Poi2010]Monotonicity 2

题目

给出N个正整数a[1..N],再给出K个关系符号(>、<或=)s[1..k]。
选出一个长度为L的子序列(不要求连续),要求这个子序列的第i项和第i+1项的的大小关系为s[(i-1)mod K+1]。
求出L的最大值。

INPUT

第一行两个正整数,分别表示N和K (N, K <= 500,000)。
第二行给出N个正整数,第i个正整数表示a[i] (a[i] <= 10^6)。
第三行给出K个空格隔开关系符号(>、<或=),第i个表示s[i]。

OUTPUT

一个正整数,表示L的最大值。

SAMPLE

INPUT

7 3
2 4 3 1 3 5 3
< > =

OUTPUT

6

解题报告

考试时连最最最简单的DP都没想出来,就打了个DFS- -
正解:
我们先考虑只有一种符号的情况,比如说考虑<,那么不就变成了求最长上升子序列吗。
同样的,我们扩展至三种符号:
 for(int i=;i<=n;i++){
f[i]=;
for(int j=;j<=i-;j++){
int tmp(f[j]%k+);
if(op[tmp]=='='&&a[j]==a[i]&&f[j]+>f[i])
f[i]=f[j]+;
if(op[tmp]=='>'&&a[j]>a[i]&&f[j]+>f[i])
f[i]=f[j]+;
if(op[tmp]=='<'&&a[j]<a[i]&&f[j]+>f[i])
f[i]=f[j]+;
}
}
这就是最最最简单的DP,然而我们知道,这玩意是O(n²)的复杂度,显然会T,那么我们就需要优化一下了。
我们发现,转移时有O(n)的复杂度来找最大值,那么我们想,是否可以把这个过程优化呢?自然可以,我们的目的在于找到权值符合条件的最大f值,所以,我们需要一个新的东西来完成它:

权值线段树

这是一个神奇的数据结构- -,好吧,也不怎么神奇,它在这道题里是以权值为下标,存入该点最优解的一种线段树,它就可以完成这个伟大的任务啦。
我们需要3棵树(其实2棵也可以,相等的那个用数组模拟即可实现,只是我比较懒- -),每一棵树存以该符号为后面所接符号的权值的最优解(好绕啊- -),这样我们在找的时候,取出每棵树中符合权值条件的最优解,三解进行比较,选出最优以确定符号,继续转移并更新相应的线段树即可。
(我语文表达能力好弱啊)
 #include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
inline int read(){
int sum();
char ch(getchar());
for(;ch<''||ch>'';ch=getchar());
for(;ch>=''&&ch<='';sum=sum*+(ch^),ch=getchar());
return sum;
}
inline char init(){
char ch(getchar());
for(;ch!='='&&ch!='>'&&ch!='<';ch=getchar());
return ch;
}
inline int my_max(int a,int b){
return a>b?a:b;
}
int n,k;
int a[],op[];
int tr_d[],tr_x[],tr_e[];
int ad_d[],ad_x[],ad_e[];
inline void pushup_d(int i){
tr_d[i]=my_max(tr_d[i<<],tr_d[i<<|]);
}
inline void pushup_x(int i){
tr_x[i]=my_max(tr_x[i<<],tr_x[i<<|]);
}
inline void pushup_e(int i){
tr_e[i]=my_max(tr_e[i<<],tr_e[i<<|]);
}
inline void pushdown_d(int i){
if(ad_d[i]){
ad_d[i<<]=ad_d[i];
ad_d[i<<|]=ad_d[i];
tr_d[i<<]=ad_d[i];
tr_d[i<<|]=ad_d[i];
tr_d[i]=ad_d[i];
ad_d[i]=;
}
}
inline void pushdown_x(int i){
if(ad_x[i]){
ad_x[i<<]=ad_x[i];
ad_x[i<<|]=ad_x[i];
tr_x[i<<]=ad_x[i];
tr_x[i<<|]=ad_x[i];
tr_x[i]=ad_x[i];
ad_x[i]=;
}
}
inline void pushdown_e(int i){
if(ad_e[i]){
ad_e[i<<]=ad_e[i];
ad_e[i<<|]=ad_e[i];
tr_e[i<<]=ad_e[i];
tr_e[i<<|]=ad_e[i];
tr_e[i]=ad_e[i];
ad_e[i]=;
}
}
inline void update_d(int ll,int rr,int c,int l,int r,int i){
if(ll<=l&&r<=rr){
ad_d[i]=c;
tr_d[i]=c;
return;
}
pushdown_d(i);
int mid((l+r)>>);
if(ll<=mid)
update_d(ll,rr,c,l,mid,i<<);
if(rr>mid)
update_d(ll,rr,c,mid+,r,i<<|);
pushup_d(i);
}
inline void update_x(int ll,int rr,int c,int l,int r,int i){
if(ll<=l&&r<=rr){
ad_x[i]=c;
tr_x[i]=c;
return;
}
pushdown_x(i);
int mid((l+r)>>);
if(ll<=mid)
update_x(ll,rr,c,l,mid,i<<);
if(rr>mid)
update_x(ll,rr,c,mid+,r,i<<|);
pushup_x(i);
}
inline void update_e(int ll,int rr,int c,int l,int r,int i){
if(ll<=l&&r<=rr){
ad_e[i]=c;
tr_e[i]=c;
return;
}
pushdown_e(i);
int mid((l+r)>>);
if(ll<=mid)
update_e(ll,rr,c,l,mid,i<<);
if(rr>mid)
update_e(ll,rr,c,mid+,r,i<<|);
pushup_e(i);
}
inline int query_d(int ll,int rr,int l,int r,int i){
if(ll>rr)
return ;
if(ll<=l&&r<=rr)
return tr_d[i];
pushdown_d(i);
int mid((l+r)>>);
int ret();
if(ll<=mid)
ret=my_max(ret,query_d(ll,rr,l,mid,i<<));
if(rr>mid)
ret=my_max(ret,query_d(ll,rr,mid+,r,i<<|));
return ret;
}
inline int query_x(int ll,int rr,int l,int r,int i){
if(ll>rr)
return ;
if(ll<=l&&r<=rr)
return tr_x[i];
pushdown_x(i);
int mid((l+r)>>);
int ret();
if(ll<=mid)
ret=my_max(ret,query_x(ll,rr,l,mid,i<<));
if(rr>mid)
ret=my_max(ret,query_x(ll,rr,mid+,r,i<<|));
return ret;
}
inline int query_e(int ll,int rr,int l,int r,int i){
if(ll>rr)
return ;
if(ll<=l&&r<=rr)
return tr_e[i];
pushdown_e(i);
int mid((l+r)>>);
int ret();
if(ll<=mid)
ret=my_max(ret,query_e(ll,rr,l,mid,i<<));
if(rr>mid)
ret=my_max(ret,query_e(ll,rr,mid+,r,i<<|));
return ret;
}
int f[];
int mx();
int main(){
n=read(),k=read();
for(int i=;i<=n;i++)
a[i]=read(),mx=my_max(mx,a[i]);
for(int i=;i<=k;i++){
char ch(init());
if(ch=='>')
op[i]=;
if(ch=='<')
op[i]=;
if(ch=='=')
op[i]=;
}
f[]=;
if(op[]==)
update_d(a[],a[],f[],,mx,);
if(op[]==)
update_x(a[],a[],f[],,mx,);
if(op[]==)
update_e(a[],a[],f[],,mx,);
for(int i=;i<=n;i++){
int now(a[i]);
int ans_d(query_d(now+,mx,,mx,));
int ans_x(query_x(,now-,,mx,));
int ans_e(query_e(now,now,,mx,));
int ans(my_max(my_max(ans_d,ans_x),ans_e));
f[i]=ans+;
int o(op[ans%k+]);//cout<<i<<' '<<f[i]<<' '<<o<<endl;
if(o==)
update_d(now,now,f[i],,mx,);
if(o==)
update_x(now,now,f[i],,mx,);
if(o==)
update_e(now,now,f[i],,mx,);
}
int mxx();
for(int i=;i<=n;i++)
mxx=my_max(mxx,f[i]);
printf("%d",mxx);
}
写的极其丑- -,毕竟三颗线段树乱搞
凑合着看吧,其实理解了之后,一颗线段树,加不同的域,对传的参数进行处理,就可以达到三颗线段树的效果

[补档][Poi2010]Monotonicity 2的更多相关文章

  1. [补档]暑假集训D3总结

    考试 集训第一次考试,然而- -   总共四道题,两道打了DFS,一道暴力,一道~~输出样例~~乱搞,都是泪啊- - 目前只改了三道,回头改完那道题再上题解吧- - T2 [Poi2010]Monot ...

  2. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  3. 【BZOJ2090/2089】[Poi2010]Monotonicity 2 动态规划+线段树

    [BZOJ2090/2089][Poi2010]Monotonicity Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k].选出一个长度 ...

  4. STL 补档

    STL 补档 1.vector 作用:它能够像容器一样存放各种类型的对象,简单地说,vector是一个能够存放任意类型的动态数组,能够增加和压缩数据. vector在C++标准模板库中的部分内容,它是 ...

  5. 图论补档——KM算法+稳定婚姻问题

    突然发现考前复习图论的时候直接把 KM 和 稳定婚姻 给跳了--emmm 结果现在刷训练指南就疯狂补档.QAQ. KM算法--二分图最大带权匹配 提出问题 (不严谨定义,理解即可) 二分图 定义:将点 ...

  6. [补档] 大假期集训Part.1

    新博客搭起来先补一发档... 那就从大假期集训第一部分说起好了QwQ 自己还是太菜掉回了2016级水平 day1: day1的时候来得有点晚(毕竟准高一)然后进机房发现早就开考了还没有给我题面于是搞了 ...

  7. 软件安装配置笔记(三)——ArcGIS系列产品安装与配置(补档)(附数据库连接及数据导入)

    在前两篇安装配置笔记之后,就忘记把其他安装配置笔记迁移过来了,真是失误失误!趁现在其他文档需要赶紧补上. 目录: 一.ArcMap 二.ArcMap连接数据库并导入数据 三.Arcgis Pro 四. ...

  8. 补档 Codeblocks下的文件标题栏(标签)显示方法

    可能在以下链接也能看到这篇文档 我知道很多人都不知道这个到底叫啥,还不如直接一点: 文件标题栏 就是如下的效果. 解决办法: 在左上角第三个view下,打开后取消Hide editor tabs 选项 ...

  9. [BZOJ2090/2089] [Poi2010]Monotonicity 2/Monotonicity 树状数组优化dp

    这个dp乍看不科学,仔细一看更不科学,所以作为一个执着BOY,我决定要造数据卡死波兰人民,但是我造着造着就......证出来了......... 这个就是把 < > =分开讨论每次找到f[ ...

随机推荐

  1. ecshop循环计数

    循环依次递增+1 <!-- {foreach from=$comments item=comment name=comment} --> {$smarty.foreach.comment. ...

  2. 前端UI组件复用工具

    "懒"是第一生产力. 代码复用总是程序员喜闻乐见的,前端组件化的最终目的就是复用,今天我们就将深入探讨如何实现UI组件的复用. 通常我们所说的组件往往是包含业务逻辑的前端组件,而这 ...

  3. iOS 转场动画探究(二)

    这篇文章是接着第一篇写的,要是有同行刚看到的话建议从前面第一篇看,这是第一篇的地址:iOS 转场动画探究(一) 接着上一篇写的内容: 上一篇iOS 转场动画探究(一)我们说到了转场要素的第四点,把那个 ...

  4. EBS系统启动&停止&增加表空间&替换首页图片

    EBS系统启动&停止&增加表空间&替换首页图片 数据库启动 使用oraprod账号登陆 [root@htdb data]# su oraprod [oraprod@htdb d ...

  5. (转载)IQ 16.0 SP02起支持从压缩文件直接装载数据到表中

    参考文档: http://m.blog.chinaunix.net/uid-16765068-id-4405877.htmlhttp://www.cnblogs.com/lichmama/p/4103 ...

  6. vijos1059题解

    题目: XC的儿子小XC最喜欢玩的游戏用积木垒漂亮的城堡.城堡是用一些立方体的积木垒成的,城堡的每一层是一块积木.小XC是一个比他爸爸XC还聪明的孩子,他发现垒城堡的时候,如果下面的积木比上面的积木大 ...

  7. 分享一次Oracle数据导入导出经历

    最近工作上有一个任务要修改一个比较老的项目,分公司这边没有这个项目数据库相关的备份,所以需要从正式环境上面导出数据库备份出来在本地进行部署安装,之前在其它项目的时候也弄过这个数据库的部署和安装,也写了 ...

  8. Netty ByteBuf源码分析

    Netty的ByteBuf是JDK中ByteBuffer的升级版,提供了NIO buffer和byte数组的抽象视图. ByteBuf的主要类集成关系: (图片来自Netty权威指南,图中有一个画错的 ...

  9. ASP.NET Core之跨平台的实时性能监控

    前言 前面我们聊了一下一个应用程序 应该监控的8个关键位置. . 嗯..地址如下: 应用程序的8个关键性能指标以及测量方法 最后卖了个小关子,是关于如何监控ASP.NET Core的. 今天我们就来讲 ...

  10. js实现日期格式化

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <meta http-e ...