D. The Bakery

time limit per test:2.5 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

Input

The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

Output

Print the only integer – the maximum total value of all boxes with cakes.

Examples
Input
4 1
1 2 2 1
Output
2
Input
7 2
1 3 3 1 4 4 4
Output
5
Input
8 3
7 7 8 7 7 8 1 7
Output
6
Note

In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

题目链接:http://codeforces.com/contest/834/problem/D

题意:把n个数分成k段,每段的价值等于这一段内不同数字的个数,求总的最大价值。

可以很快发现这是一个dp,dp[i][j]表示到第i个数字,已经分成了k段的最大价值。

dp[i][j] = max(dp[t][j-1]) (1<= t < i)

可以发现转移不是那么容易,所以我们用到线段树去维护当前位置前面的最大价值。

对于状态i,j,线段树维护的是1~i-1的最大值

对于每一个位置,找到前面最后一个与它数字相同的的位置,把这之间线段树的值都加上1,然后dp[i][j]的值就是j-1到i-1的最大值。

最后答案就是dp[n][k]。

(注意线段树的区间范围是0~n,因为可以直接从0转移过来)

下面给出AC代码:【二维数组改写成一维数组(个人原因,不太喜欢高维度的)】

 #include <bits/stdc++.h>
using namespace std;
#define maxn 35010
#define INF 0x3f3f3f3f
int addv[maxn*],Max[maxn*];
int dp[maxn],ql,qr;
int pre[maxn], last[maxn], a[maxn];
void build(int l,int r,int o)
{
addv[o]=;
if(l == r)
{
Max[o]=dp[l];
return;
}
int mid=l+(r-l)/;
build(l,mid,o*);
build(mid+,r,o*+);
Max[o]=max(Max[o*],Max[o*+]);
}
void pushdown(int o)
{
int lc=o*,rc=o*+;
if(addv[o])
{
addv[lc]+=addv[o];
addv[rc]+=addv[o];
Max[lc]+=addv[o];
Max[rc]+=addv[o];
addv[o]=;
}
}
void update(int l,int r,int o)
{
if(ql>qr)
return;
if(ql<=l&&qr>=r)
{
addv[o]++;
Max[o]++;
return;
}
pushdown(o);
int mid=l+(r-l)/;
if(ql<=mid)
update(l,mid,o*);
if(qr>mid)
update(mid+,r,o*+);
Max[o]=max(Max[o*],Max[o*+]);
}
int query(int l,int r,int o)
{
if(ql<=l&&qr>=r)
{
return Max[o];
}
pushdown(o);
int mid=l+(r-l)/;
int best=-INF;
if(ql<=mid)
best=max(best,query(l,mid,o*));
if(qr>mid)
best=max(best,query(mid+,r,o*+));
return best;
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
memset(last,-,sizeof(last));
int cnt=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
pre[i]=last[a[i]];
last[a[i]]=i;
if(pre[i]==-)
cnt++;
dp[i]=cnt;
}
for(int kk=;kk<=k;kk++)
{
for(int i=;i<kk-;i++)
dp[i]=-INF;
build(,n,);
for(int i=kk;i<=n;i++)
{
ql=max(,pre[i]),qr=i-;
update(,n,);
ql=,qr=i-;
dp[i]=query(,n,);
}
}
printf("%d\n",dp[n]);
return ;
}

官方题解:

 #include <cstdio>
#include <cstring>
#include <map> #define K first
#define V second const int N = ; int last[N], pre[N], dp[N]; int main()
{
int n, m;
while (scanf("%d%d", &n, &m) == ) {
memset(last, , sizeof(last));
for (int i = , a; i <= n; ++ i) {
scanf("%d", &a);
pre[i] = last[a];
last[a] = i;
}
dp[] = ;
for (int i = ; i <= n; ++ i) {
dp[i] = dp[i - ] + !pre[i];
}
for (int k = ; k <= m; ++ k) {
std::map<int, int> c;
c[] = n + ;
int last_dp = dp[k - ];
for (int i = k; i <= n; ++ i) {
int now = ;
while (now + c.rbegin()->V <= last_dp) {
now += c.rbegin()->V;
c.erase(c.rbegin()->K);
}
c.rbegin()->V += now - last_dp;
c[i] = last_dp + ;
auto it = c.upper_bound(pre[i]);
it --;
it->V --;
if (it->V == ) {
c.erase(it->K);
}
last_dp = dp[i];
dp[i] = (n + ) - c.begin()->V;
}
}
printf("%d\n", dp[n]);
}
}

Codeforces 834D The Bakery【dp+线段树维护+lazy】的更多相关文章

  1. Codeforces 834D The Bakery 【线段树优化DP】*

    Codeforces 834D The Bakery LINK 题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献 是第一次做线段树维护DP值的题 感觉还可以, ...

  2. Codeforces 834D The Bakery - 动态规划 - 线段树

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  3. Codeforces 833B The Bakery dp线段树

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  4. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  5. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  6. [Codeforces]817F. MEX Queries 离散化+线段树维护

    [Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...

  7. [动态dp]线段树维护转移矩阵

    背景:czy上课讲了新知识,从未见到过,总结一下. 所谓动态dp,是在动态规划的基础上,需要维护一些修改操作的算法. 这类题目分为如下三个步骤:(都是对于常系数齐次递推问题) 1先不考虑修改,不考虑区 ...

  8. Subsequence Count 2017ccpc网络赛 1006 dp+线段树维护矩阵

    Problem Description Given a binary string S[1,...,N] (i.e. a sequence of 0's and 1's), and Q queries ...

  9. DP+线段树维护矩阵(2019牛客暑期多校训练营(第二场))--MAZE

    题意:https://ac.nowcoder.com/acm/contest/882/E 给你01矩阵,有两种操作:1是把一个位置0变1.1变0,2是问你从第一行i开始,到最后一行j有几种走法.你只能 ...

随机推荐

  1. 【python】列表

    >>> mix = [2,3.4,"abc",'中国',True,['ab',23]]>>> mix[2, 3.4, 'abc', '中国', ...

  2. Spring框架(三) JDBCTemplate,声明式事务,自动装载(注解)

    JDBCTemplate 按照标准正常项目的结构 结构图: model层 dao层 实现  dao:(DateBase Access Object) 数据访问对象,dao层只用来访问数据库和模型层 s ...

  3. c语言文件分割与合并

    一.综述 c语言操作文件通过文件指针FILE*,每个要操作的文件必须打开然后才能读写. 注意事项: @1分割与合并文件最好使用二进制模式即"rb"或"wb",这 ...

  4. linux集群批量执行命令

    因为工作需要,需要修改集群中机器的配置,一台一台的修改太浪费时间,就想能不能通过自动化脚本批量执行命令,尝试写一个,自己shell不熟悉,写的有点渣渣 if [ "$#" -ne ...

  5. [置顶] 几行代码实现ofo首页小黄人眼睛加速感应转动

    最新版的ofo 小黄车的首页小黄人眼睛随重力而转动,感觉有点炫酷,学习一下吧,以下代码是在xamarin android下实现 ofo首页效果图: xamarin android实现效果: 实现思路: ...

  6. 【Socket】苍老师有了丈夫,我也有了SAEA

    一.前言        时间过得真是快,转眼就2018年了.首先祝各位博友,软件开发者新年新气象,事业有成,身体健康,阖家幸福!最近看到园子里好多关于自己的2017年度总结以及对自己新一年的愿景,觉得 ...

  7. Docker(五):Docker高级网络配置

    1.容器跨主机多子网方案 网络设计如下: 主机1:10.110.52.38 容器1: 192.168.0.1 vlan1 容器2: 192.168.0.2 vlan2 主机2:10.110.52.66 ...

  8. JavaScript获取数组最小值和最大值的方法

    本文实例讲述了JavaScript获取数组最小值和最大值的方法.分享给大家供大家参考.具体如下: ? 1 2 3 4 5 6 var arr = new Array(); arr[0] = 100; ...

  9. 快速恢复开发环境(系统还原后的思考,附上eclipse注释的xml配置文件)

    1.Eclipse/Myeclipse的工作空间,不能放在系统盘 除非你的项目都有实时的云同步或SVN等,才能放在系统固态盘,不然你享受快速启动项目的同时,也需要承担系统奔溃后找不回项目的风险: 公司 ...

  10. iOS pods-xxxx-frameworks.sh:permission denied问题

    找到Build Phases, 点开Embed Pods Frameworks 是不是看到了"${SRCROOT}/Pods/Target Support Files/Pods/Pods-f ...