Building roads
Building roads |
| Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 34 Accepted Submission(s): 13 |
|
Problem Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns. That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to. We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other. Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|. |
|
Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively. Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one. Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other. The same pair of barns never appears more than once. Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once. You should note that all the coordinates are in the range [-1000000, 1000000]. |
|
Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.
|
|
Sample Input
4 1 1 |
|
Sample Output
53246 |
|
Source
POJ Monthly - 2006.01.22 - zhucheng
|
|
Recommend
威士忌
|
/*
题意:有n个牛棚,给出坐标,农夫想先建两个中转站s1,s2,然后每个牛棚通过中转站进行相互联通,但是给出a,b牛棚的牛相互厌恶
不能通过同一个中转站,c,d两个牛棚的牛相互喜欢,必须通过同一个中转站。s1 ,s2是连通的中间有一条路,现在让你求怎么样
建边,才能使这些牛棚距离最大的两个牛棚的距离最小。 题意:和maximum shortest distance(最大团)相似,就是二分距离建边,然后判断的时候只需要用2-SAT跑一下看是否可以解决就可
以,问题的关键就在于如何建边,每次二分判断的时候,先按照A B的要求进行建边,然后按照如果距离大于mid的建边,然后再判
段是不是可以解决2-SAT问题。 #错误:RE正在debug
build 写的不是很好
*/
#include<bits/stdc++.h>
using namespace std;
/*********************************************2-SAT模板*********************************************/
const int maxn=+;
struct TwoSAT
{
int n;//原始图的节点数(未翻倍)
vector<int> G[maxn*];//G[i].j表示如果mark[i]=true,那么mark[j]也要=true
bool mark[maxn*];//标记
int S[maxn*],c;//S和c用来记录一次dfs遍历的所有节点编号 //从x执行dfs遍历,途径的所有点都标记
//如果不能标记,那么返回false
bool dfs(int x)
{
if(mark[x^]) return false;//这两句的位置不能调换
if(mark[x]) return true;
mark[x]=true;
S[c++]=x;
for(int i=;i<G[x].size();i++)
if(!dfs(G[x][i])) return false;
return true;
} void init(int tol)
{
n=tol;
for(int i=;i<*tol;i++)
G[i].clear();
memset(mark,,sizeof(mark));
} //加入(x,xval)或(y,yval)条件
//xval=0表示假,yval=1表示真
void add_clause(int x,int xval,int y,int yval)//这个地方不是一尘不变的,而是参照问题的约束条件进行加边
{
x=x*+xval;
y=y*+yval;
G[x^].push_back(y);//这是建双向边
G[y^].push_back(x);
} //判断当前2-SAT问题是否有解
bool solve()
{
for(int i=;i<*n;i+=)
if(!mark[i] && !mark[i+])
{
c=;
if(!dfs(i))
{
while(c>) mark[S[--c]]=false;
if(!dfs(i+)) return false;
}
}
return true;
}
}TS;
/*********************************************2-SAT模板*********************************************/
struct Point{
int x,y;
Point(){}
Point(int a,int b){
x=a;
y=b;
}
void input(){
scanf("%d%d",&x,&y);
}
};
int dis(Point a,Point b){//曼哈顿距离
int dx=a.x-b.x;
int dy=a.y-b.y;
return abs(dx)+abs(dy);
}
int n,A,B;
Point s1,s2;//中转站
Point p[maxn];//牛棚的坐标
Point a[maxn*],b[maxn*];//用来标记A B给出的关系
int g[maxn][maxn][];//离散化两点间的距离,两点的距离总共有四种状态,都在s1,都在s2,交叉的两种
int sTos=;//s1和s2间的距离 void init(){//初始化出所有的两点间的距离
for(int i=;i<n;i++){
for(int j=;j<i;j++){
g[i][j][]=dis(p[i],s1)+dis(p[j],s1);//都在s1
g[i][j][]=dis(p[i],s1)+dis(p[j],s2)+sTos;//i在s1 j在s2
g[i][j][]=dis(p[i],s2)+dis(p[j],s1)+sTos;//i在s2 j在s1
g[i][j][]=dis(p[i],s2)+dis(p[j],s2);//都在s2
}
}
} bool judge(int mid){//按照要求将所有的边建好
TS.init(n); /* × */
for(int i=;i<A;i++){//相互喜欢的,都在s1或者s2
TS.add_clause(a[i].x-,,a[i].y-,);
TS.add_clause(a[i].y-,,a[i].x-,);
}
for(int i=;i<B;i++){//相互讨厌的,只要不在一块就行
TS.add_clause(b[i].x-,,b[i].x-,);
TS.add_clause(b[i].y-,,b[i].y-,);
TS.add_clause(b[i].x-,,b[i].y-,);
TS.add_clause(b[i].y-,,b[i].x-,);
} for(int i=;i<n;i++){ /* √ */
for(int j=;j<i;j++){
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//都在s1
}
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//i在s1 j在s2
}
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//i在s2 j在s1
}
if(g[i][j][]>mid){
TS.add_clause(i,,j,);//都在s2
}
}
}
return TS.solve();
}
int main(){
// freopen("in.txt","r",stdin);
while(scanf("%d%d%d",&n,&A,&B)!=EOF){
s1.input();s2.input();
// cout<<s1.x<<" "<<s1.y<<" "<<s2.x<<" "<<s2.y<<endl;
sTos=dis(s1,s2);
// cout<<sTos<<endl;
for(int i=;i<n;i++){
p[i].input();
// cout<<p[i].x<<" "<<p[i].y<<endl;
}//处理点的输入
init();
// for(int i=0;i<n;i++){
// for(int j=0;j<n;j++){
// cout<<g[i][j][0]<<" ";
// }cout<<endl;
// }
for(int i=;i<A;i++){
a[i].input();
// cout<<a[i].x<<" "<<a[i].y<<endl;
}
for(int i=;i<B;i++){
b[i].input();
// cout<<b[i].x<<" "<<b[i].y<<endl;
}
if(judge()==false){//如果这种状态不可能的就直接输出就行了
puts("-1");
continue;
}
int l=,r=;
while(l<r){
// cout<<l<<" "<<r<<endl;
int mid=(l+r)/;
if(judge(mid)==false)
l=mid+;
else r=mid;
}
printf("%d\n",l);
}
return ;
}
Building roads的更多相关文章
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...
- [POJ2749]Building roads(2-SAT)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8153 Accepted: 2772 De ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
- 洛谷——P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...
- USACO Building Roads
洛谷 P2872 [USACO07DEC]道路建设Building Roads 洛谷传送门 JDOJ 2546: USACO 2007 Dec Silver 2.Building Roads JDOJ ...
随机推荐
- ACM学习之路__HDU 1045
Fire Net Description : Suppose that we have a square city with straight streets. A map of a city is ...
- ①【javascript设计到的技术点】
一.dom操作: document.getElementById() document.getElementsByTagName() 二.事件操作: dom2级事件 主流浏览器 addEventLis ...
- 走进Node.js 之 HTTP实现分析
作者:正龙(沪江Web前端开发工程师) 本文为原创文章,转载请注明作者及出处 上文"走进Node.js启动过程"中我们算是成功入门了.既然Node.js的强项是处理网络请求,那我们 ...
- oracle查询用户权限及角色(摘)
1.查看所有用户: select * from dba_users; select * from all_users; select * from user_users; 2.查看用户或角色系统权限( ...
- Day4 装饰器——迭代器——生成器
一 装饰器 1.1 函数对象 一 函数是第一类对象,即函数可以当作数据传递 #1 可以被引用 #2 可以当作参数传递 #3 返回值可以是函数 #3 可以当作容器类型的元素 二 利用该特性,优雅的取代多 ...
- 写了一个迷你confirm弹窗插件,有取消和确认操作处理并支持单个确认使用弹窗和锁屏禁止滚动
由于项目想精简不想用其他第三方的ui插件,又很需要像confirm等小效果来完善交互,且使用的频率也是相当的高,于是自己造了一个,省时也省力 代码已经粘贴出来,直接复制即可看到效果,高手勿喷,可以相互 ...
- Ngnix技术研究系列1-通过应用场景看Nginx的反向代理
随着我们业务规模的不断增长,整个系统规模由两年前的几十台服务器,井喷到现在2个数据中心,接近400台服务器,上百个WebApi站点,上百个域名. 这么多的WebApi站点这么多的域名,管理和维护成本很 ...
- 【前端】深入浅出Javascript中的数值转换
由于Javascript是一门弱类型的语言,在我们的代码中无时无刻不在发生着类型转换,所以了解Javascript中的类型转换对于了解我们认识Javascript的运行原理至关重要. 本文主要从数值转 ...
- 框架应用 : Spring开发详述
Spring framework简介 spring framework这个框架是spring项目中的核心项目,所有框架都依赖于这个框架. 它是一个一站式的开源框架,基础技术是IoC. 按官方文档主要分 ...
- apache一个ip多个端口虚拟主机
1.打开httpd.conf,查找Listen:80,在下面一行加入Listen:8080:2.查找#Include conf/extra/httpd-vhosts.conf,将此行前面的#去掉:3. ...