word2vec 是google 推出的做词嵌入(word embedding)的开源工具。 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为"word embedding"。基于这个向量表示,可以计算词与词之间的关系,例如相似性(同义词等),语义关联性(中国 - 北京 = 英国 - 伦敦)等。NLP中传统的词表示方法是 one-hot representation, 即把每个单词表示成dim维的稀疏向量,dim等于词汇量的大小。这个稀疏向量只有一个维度(该单词的index)上是1,其余全是0。这个表示方法使得单词之间是孤立的。 word embedding则是把单词的表示降维到n维的稠密向量,n<<dim。

作为非NLP专业的人,我不在此讲述word embedding的算法原理,本文是对word2vec工具使用过程的整理与总结,方便大家尽快上手。本文以中文处理为例,Word2vec对语言并没有限制。

安装 word2vec

从它的项目主页上下载源码(或者从我的github上下载 https://github.com/Leavingseason/word2vec  内容是一样的)。源码是linux下的c语言写的,如果要在windows下编译,需要用到Cygwin。Cygwin就是在windows平台上运行类Unix的模拟环境。安装需要几个小时,之后在Cygwin里面编译Word2vec,不需要改任何代码。

如果不想装Cygwin,也可以用Java版本的Word2vec。 我fork了一个java版本的实现:https://github.com/Leavingseason/Word2VEC_java  其中MyWord2VEC_java_eclipse.zip是我自己稍微整理的直接在eclipse上可以用的源码。经测试java版的也很好用。

准备语料库

要针对自己的情景,训练适合自己的词嵌入,所以要自己准备一个语料库。我用的是商品点评的语料。如果大家想做实验试试,可以用wiki的中文语料库,参考 http://www.52nlp.cn/%E4%B8%AD%E8%8B%B1%E6%96%87%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E8%AF%AD%E6%96%99%E4%B8%8A%E7%9A%84word2vec%E5%AE%9E%E9%AA%8C/comment-page-1  我自己处理了一份中文wiki语料库,已经完成格式化、繁体转简体和分词的过程,下载页面: http://pan.baidu.com/s/1jHZCvvo   格式如下图所示:

对于中文语料,第一步需要分词。现成的工具很多,我喜欢用SnowNLP https://github.com/isnowfy/snownlp , 除了分词,它还提供情感分析,繁体转简体,汉字to拼音等功能。 当然现有的其他NLP工具很多,像结巴分词等等。我试用了SnowNLP,感觉效果还挺不错的。

分完词后,把语料库整理成Word2vec的输入格式。这个格式很简单,单词之间用空格隔开就行了。 word2vec 把一个单词的前面和后面的k个单词作为context训练, 其中会自动把换行符替换成 </s> ,也就是句子分隔符。

训练word2vec模型

其实在源码目录有一些类似“demo-train-big-model-v1.sh”的脚本,它们就是运行Word2vec工具的示例。它会自动下载一个语料库然后执行。如果我们已经有了语料库,就不用下载了,脚本可以简化很多(Cygwin中运行):

time ./word2vec -train "data/review.txt" -output "data/review.model" -cbow  -size  -window  -negative  -hs  -sample 1e- -threads  -binary  -iter 
-train "data/review.txt" 表示在指定的语料库上训练模型
-cbow 1 表示用cbow模型,设成0表示用skip-gram模型 -size 100 词向量的维度为100 -window 8 训练窗口的大小为8 即考虑一个单词的前八个和后八个单词
-negative 25 -hs 0  是使用negative sample还是HS算法
-sample 1e-4 采用阈值
-threads 20 线程数
-binary 1 输出model保存成2进制 
-iter 15 迭代次数

训练还是很快的,在我的1G语料库上训练2小时左右。

使用结果

得到模型后,可以用命令  ./distance data/review.model 测试单词的最近邻。 这个要求刚才生成的模型是保存成二进制的。

除了计算距离,还有一些有意思的例子,例如http://www.tuicool.com/articles/RB7fqaB 所写。

如果把模型保存成普通文本型,那么可以得到每个单词的向量表示,使用就灵活了,可以在自己的程序里读取这个model, 然后和自由计算各种值。

如果想偷懒的话,就用上述提到的java版程序加载model,然后可以做一系列方法调用。

Word2Vec 使用总结的更多相关文章

  1. word2vec 中的数学原理详解

    word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...

  2. Java豆瓣电影爬虫——使用Word2Vec分析电影短评数据

    在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感 ...

  3. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  4. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  5. Word2vec多线程(tensorflow)

    workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_ ...

  6. Word2vec 模型载入(tensorflow)

    opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, sessi ...

  7. Forward-backward梯度求导(tensorflow word2vec实例)

    考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度 ...

  8. Tensorflow word2vec编译运行

    Word2vec 更完整版本(非demo)的代码在 tensorflow/models/embedding/     首先需要安装bazel 来进行编译 bazel可以下载最新的binary安装文件, ...

  9. 中英文维基百科语料上的Word2Vec实验

    最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了 ...

随机推荐

  1. jQuery构造函数init参数分析(一)

    在我的上一篇随笔里面分析了jQuery的构造函数,jQuery对象中有一个原型方法init才是是真正的构造函数,通过init的原型对象跟jQuery的原型对象保持引用关系使得init的实例可以正常调用 ...

  2. 基于Tomcat的Solr3.5集群部署

    基于Tomcat的Solr3.5集群部署 一.准备工作 1.1 保证SOLR库文件版本相同 保证SOLR的lib文件版本,slf4j-log4j12-1.6.1.jar slf4j-jdk14-1.6 ...

  3. Mac 下安装Jenkins

    Mac 下安装Jenkins 开始 Jenkins是一个基于Java开发的一种持续集成工具,用于建工持续重复的工作,功能包括: 持续的软件版本发布/测试项目 监控外部调用执行的工作. 近期打算搭建自动 ...

  4. iOS多线程实现4-NSOperation

    原文链接:http://www.cnblogs.com/mddblog/p/4816875.html 一.介绍 NSOperation是一个抽象类,我们可以使用系统提供的子类或者自己实现它的子类,具有 ...

  5. Git 常见的命令操作

    克隆                git clone git地址 查看分支         git branch 查看git库状态  git status 切换分支         git  che ...

  6. ListView和Adapter的配合使用以及Adapter的重写

    ListView和Adapter的使用   首先介绍一下ListView是Android开发过程中较为常见的组件之一,它将数据以列表的形式展现出来.一般而言,一个ListView由以下三个元素组成: ...

  7. Sphinx安装配置应用

    Sphinx 是由俄罗斯人Andrew Aksyonoff开发的一个全文搜索引擎.意图为其他应用提供高速.地空间占用.高结果相关度的全文搜索功能.Sphinx可以非常容易的与SQL数据库和脚本语言集成 ...

  8. 下一代Asp.net开发规范OWIN(3)—— Middleware

    Middleware是OWIN管道的基本组成单元,最后拼接的OWIN管道来处理客户端请求,输出网页.这篇文章,首先看看Web Form, MVC, Web API如何结合OWIN使用. 然后将如何编写 ...

  9. Linux命令学习总结:cp命令

    命令简介: cp命令用来复制文件或目录.指令英文原义:copy 指令所在路径:/bin/cp 命令语法: Usage: cp [OPTION]... [-T] SOURCE DEST or: cp [ ...

  10. 机器学习实战笔记(Python实现)-00-readme

    近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学 ...