求集合的所有子集问题

LeetCode:Subsets

Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,3], a solution is:

[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
] 本文地址

分析:求集合的所有子集问题。题目要求子集中元素非递减序排列,因此我们先要对原来的集合进行排序。原集合中每一个元素在子集中有两种状态:要么存在、要么不存在。这样构造子集的过程中每个元素就有两种选择方法:选择、不选择,因此可以构造一颗二叉树,例如对于例子中给的集合[1,2,3],构造的二叉树如下(左子树表示选择该层处理的元素,右子树不选择),最后得到的叶子节点就是子集:

算法1:根据上面的启发,我们可以用dfs来得到树的所有叶子节点,代码如下:

 class Solution {
private:
vector<vector<int> >res;
public:
vector<vector<int> > subsets(vector<int> &S) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//先排序,然后dfs每个元素选或者不选,最后叶子节点就是所有解
res.clear();
sort(S.begin(), S.end());
vector<int>tmpres;
dfs(S, , tmpres);
return res;
}
void dfs(vector<int> &S, int iend, vector<int> &tmpres)
{
if(iend == S.size())
{res.push_back(tmpres); return;}
//选择S[iend]
tmpres.push_back(S[iend]);
dfs(S, iend+, tmpres);
tmpres.pop_back();
//不选择S[iend]
dfs(S, iend+, tmpres);
}
};

算法2:从上面的二叉树可以观察到,当前层的集合 = 上一层的集合 + 上一层的集合加入当前层处理的元素得到的所有集合(其中树根是空集),因此可以从第二层开始(第一层是空集合)迭代地求最后一层的所有集合(即叶子节点),代码如下:

 class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int len = S.size();
sort(S.begin(), S.end());
vector<vector<int> > res();//开始加入一个空集
for(int i = ; i < len; ++i)
{
int resSize = res.size();
for(int j = ; j < resSize; j++)
{
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};

算法3:可以根据二进制的思想,比如对于3个元素的集合,000表示一个元素都不选择,001表示选择第一个元素,101表示选择第一个和第三个元素...。因此如果集合大小为n,我们只需要让一个整数从0逐渐增加到2^n-1, 每个整数的二进制形式可以表示一个集合。如果用整数的二进制表示集合,这个算法有个限制,最大能表示集合元素的个数为64(unsigned long long)。如果使用bitmap,然后模拟二进制的加1操作,则对集合大小就没有限制。刚好这一题集合的大小不超过64

 class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int len = S.size();
sort(S.begin(), S.end());
vector<vector<int> > res();//开始加入一个空集 unsigned long long bit = , bitmax = (<<len);
vector<int> tmpres;
while(bit < bitmax)
{
tmpres.clear();
unsigned long long curBit = bit;
for(int i = ; i < len; i++)//依次检测前len个二进制位
{
if(curBit & )
tmpres.push_back(S[i]);
curBit >>= ;
}
res.push_back(tmpres);
bit++;
}
return res;
}
};

LeetCode:Subsets II

Given a collection of integers that might contain duplicates, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,2], a solution is:

[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]

分析:在上一题的基础上,可以允许集合中包含重复元素,我们也把相应的二叉树画出类,以集合{1,2,2}举例

算法1:dfs解法。注意到处理第三个元素2时,因为前面已经处理了一次2,所有第三层中,我们只在已经添加过2的集合{1,2}、{2}上再添加2,而没有在集合{1}, {}上添加2(画叉叉的那么分支),假设下面还有一个2,那么我们只在第四层的包含两个2的集合{1,2,2}、{2,2}上再添加2,其它都不添加。因此dfs时,如果当前处理的数字前面出现了k次,那么我们要处理的集合中必须包含k个该元素。代码如下:

 class Solution {
private:
vector<vector<int> >res;
public:
vector<vector<int> > subsetsWithDup(vector<int> &S) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//先排序,然后dfs每个元素选或者不选,最后叶子节点就是所有解
res.clear();
sort(S.begin(), S.end());
vector<int>tmpres;
dfs(S, , tmpres);
return res;
}
void dfs(vector<int> &S, int iend, vector<int> &tmpres)
{
if(iend == S.size())
{res.push_back(tmpres); return;}
int firstSame = iend;
while(firstSame >= && S[firstSame] == S[iend])firstSame--;
firstSame++; //firstSame是第一个和S[iend]相同数字的位置
int sameNum = iend - firstSame;//和S[iend]相同数字的个数(除自己)
if(sameNum == ||
(tmpres.size() >= sameNum && tmpres[tmpres.size() - sameNum] == S[iend]))
{
//选择S[iend]
tmpres.push_back(S[iend]);
dfs(S, iend+, tmpres);
tmpres.pop_back();
}
//不选择S[iend]
dfs(S, iend+, tmpres);
}
};

算法2:在上一题算法2的基础上,如果当前处理的元素没有出现过,则把前面得到的所有集合加上该元素;如果出现过,则只把上一轮处理的集合加上该元素。比如处理第二个2时(二叉树第三层),我们只把上一轮添加过数字的集合{1,2}、{2}再添加一个2加入结果中,{1}、{}是从上一层直接继承下来的,所以不作处理。代码如下:

 class Solution {
private:
vector<vector<int> >res;
public:
vector<vector<int> > subsetsWithDup(vector<int> &S) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int len = S.size();
sort(S.begin(), S.end());
vector<vector<int> > res();//开始加入一个空集
int last = S[], opResNum = ;//上一个数字、即将要进行操作的子集数量
for(int i = ; i < len; ++i)
{
if(S[i] != last)
{
last = S[i];
opResNum = res.size();
}
//如果有重复数字,即将操作的子集的数目和上次相同
int resSize = res.size();
for(int j = resSize-; j >= resSize - opResNum; j--)
{
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};

上一题基于二进制思想的算法3不适合于包含重复元素的集合

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3451902.html

LeetCode:Subsets I II的更多相关文章

  1. LeetCode Subsets I& II——递归

    I Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must ...

  2. LeetCode Subsets II (DFS)

    题意: 给一个集合,有n个可能相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: 看这个就差不多了.LEETCODE SUBSETS (DFS) class Solution { publ ...

  3. LeetCode Subsets (DFS)

    题意: 给一个集合,有n个互不相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: DFS方法:由于集合中的元素是不可能出现相同的,所以不用解决相同的元素而导致重复统计. class Sol ...

  4. 子集系列(一) 传统subset 问题,例 [LeetCode] Subset, Subset II, Bloomberg 的一道面试题

    引言 Coding 问题中有时会出现这样的问题:给定一个集合,求出这个集合所有的子集(所谓子集,就是包含原集合中的一部分元素的集合). 或者求出满足一定要求的子集,比如子集中元素总和为定值,子集元素个 ...

  5. Subsets I&&II——经典题

    Subsets I Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a s ...

  6. [LeetCode] Palindrome Partitioning II 解题笔记

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  7. [leetcode]Word Ladder II @ Python

    [leetcode]Word Ladder II @ Python 原题地址:http://oj.leetcode.com/problems/word-ladder-ii/ 参考文献:http://b ...

  8. LeetCode:课程表II【210】

    LeetCode:课程表II[210] 题目描述 现在你总共有 n 门课需要选,记为 0 到 n-1. 在选修某些课程之前需要一些先修课程. 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一 ...

  9. LeetCode:全排列II【47】

    LeetCode:全排列II[47] 参考自天码营题解:https://www.tianmaying.com/tutorial/LC47 题目描述 给定一个可包含重复数字的序列,返回所有不重复的全排列 ...

随机推荐

  1. logstash VS splunk

    web 系统是典型的分布式部署,由此对其运行状况,硬件运转情况监控也显得尤为重要,这些监控数据表面上对业务运行没有多大的用处(属于基础数据),但正是这些基础数据形成了业务“流”.比如,用户搜索爱好,浏 ...

  2. 今天再给大家带点html5前端开发的干货模板“text/tpl”怎么用 script template怎么用

    text/tpl 顾名思义就是模板,其实和C++模板函数类似的作用,就是利用他生成一个HMTL内容,然后append或者替换html里面 有什么好处,假如后端返回来的数据都是一样的,但是需要生成不同的 ...

  3. 回收ImageView占用的图像内存

    使用方法: RecycleBitmap.recycleImageView(mSelectorView);   参数为imageview /** * 回收ImageView占用的图像内存; * 使用了本 ...

  4. Android开发学习——ListView+BaseAdapter的使用

    ListView 就是用来显示一行一行的条目的MVC结构 * M:model模型层,要显示的数据           ----people集合 * V:view视图层,用户看到的界面          ...

  5. Orchard中如何配置远端发布

    Orchard中默认安装是有Blog功能的.下面介绍如何配置Remote Blog Publishing功能,使用Windows Live Writer客户端发布博客. 一,开启Remote Blog ...

  6. lambda表达式-转载

    来源:http://www.cnblogs.com/knowledgesea/p/3163725.html   前言 1.天真热,程序员活着不易,星期天,也要顶着火辣辣的太阳,总结这些东西. 2.夸夸 ...

  7. ORACLE opatch命令学习实践

      opatch 是ORACLE开发的用来安装,卸载,检测patch冲突.管理ORACLE所有已经安装的补丁的工具,当然这是一个命令工具.opatch命令工具一般位于$ORACLE_HOME/OPat ...

  8. ORA-27125: unable to create shared memory segment

    平台环境   :  Oracle Linux Server release 5.7 x86_64 数据库版本 :  Oracle Database 10g Enterprise Edition Rel ...

  9. 虚拟机VMware与主机共享文件介绍

    我们经常会在Windows平台安装虚拟机VMware,不管是出于实验测试还是工作需要,伴随而来的就是经常需要在Windows系统和虚拟机系统之间进行共享数据文件,例如,需要将Window主机上的Ora ...

  10. [转载]Linux 线程实现机制分析

    本文转自http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/ 支持原创.尊重原创,分享知识! 自从多线程编程的概念出现在 Linux ...