ACM - 动态规划 - UVA 1347 Tour
题解
题目大意:有 \(n\) 个点,给出点的 \(x\)、\(y\) 坐标。找出一条经过所有点一次的回路,从最左边的点出发,严格向右走,到达最右点再严格向左,回到最左点。问最短路径距离是多少?
这题原始的问法是不加严格向左严格向右的边界条件,也即著名的旅行商问题(TSP 问题),原问题已经被证明是一个 NP 难的问题。但在此题的限制条件下,我们可以在多项式时间里解决该问题。
我们可以试着从最左边往右走,当准备经过一个点时,它只有两种可能,一是从左往右时经过该点,二是从右往左经过该点。我们可以直接将问题等价为:两个人都从最左边往最右边行走(\(x\) 坐标严格大),每个点都被经过且仅被一个人经过(除起点和终点,起点和终点被各自经过一次),使两条路径加和最短。
显然同一个 \(x\) 坐标的点的数量最多两个,如果有至少三个点会使得至少一个点不能被这两人经过(路径要求 \(x\) 坐标严格大),此时必定不能形成回路。
我们使用动态规划求解,令 \(dp[i][j]\) 表示点 \(1 \sim max(i,j)\) 全部走过,且两个人的当前位置分别是点 \(i\) 和 \(j\),还需要走多长的距离到达最右边(终点)。
状态转移方程
考虑状态 \(dp[i][j]\),由于此时点 \(1 \sim max(i,j)\) 全部走过,因此要达到此状态,只有两种可能,点 \(max(i,j)+1\) 由第一个人走,点 \(max(i,j)+1\) 由第二个人走。
用 \(dist(m_1, m_2)\) 函数表示点 \(m_1\) 到 点 \(m_2\) 的欧几里得距离。此时若 \(i > j\),
第一种情况表示为
\]
第二种情况表示为
\]
综上,写出状态转移方程:
\]
我们再考虑边界的状态,边界如下
\]
状态搜索方向
使用递归做状态搜索,此方法的另一种名称叫记忆化搜索,但我个人倾向于将记忆化搜索视为动态规划的递归实现(即使用递归用状态搜索)。
程序实现
使用 C++ 实现算法。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#include<cmath>
#define PII pair<int, int>
#define INF 0x3f3f3f3f
using namespace std;
struct point
{
double x; // x 坐标
double y; // y 坐标
}ps[1005];
double dp[1005][1005];
double dist(int i, int j)
{
return sqrt((ps[i].x - ps[j].x) * (ps[i].x - ps[j].x) +
(ps[i].y - ps[j].y) * (ps[i].y - ps[j].y));
}
double fun(int i, int j)
{
if (dp[i][j] > 0)
return dp[i][j];
return dp[i][j] = min(fun(i + 1, j) + dist(i, i + 1),
fun(i + 1, i) + dist(j, i + 1));
}
int main()
{
int N = 1;
while (cin >> N) {
for (int i = 1; i <= N; ++i)
cin >> ps[i].x >> ps[i].y;
memset(dp, 0, sizeof(dp));
for (int j = 1; j < N - 1; j++)
dp[N - 1][j] = dist(N - 1, N) + dist(j, N);
double ans = fun(1, 1);
printf("%.2f\n", ans);
}
return 0;
}
ACM - 动态规划 - UVA 1347 Tour的更多相关文章
- UVa 1347 Tour
Tour Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Description Joh ...
- UVA 1347 Tour 【双调旅行商/DP】
John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts vi ...
- UVA - 1347 Tour(DP + 双调旅行商问题)
题意:给出按照x坐标排序的n个点,让我们求出从最左端点到最右短点然后再回来,并且经过所有点且只经过一次的最短路径. 分析:这个题目刘汝佳的算法书上也有详解(就在基础dp那一段),具体思路如下:按照题目 ...
- UVA 1347 Tour 双调TSP
TSP是NP难,但是把问题简化,到最右点之前的巡游路线只能严格向右,到最右边的点以后,返回的时候严格向左,这个问题就可以在多项式时间内求出来了. 定义状态d[i][j]表示一个人在i号点,令一个人在j ...
- UVA 1347"Tour"(经典DP)
传送门 参考资料: [1]:紫书 题意: 欧几里得距离???? 题解: AC代码: #include<bits/stdc++.h> using namespace std; ; int n ...
- Tour UVA - 1347
John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts vi ...
- 【UVa 1347】Tour
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)
Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane a ...
- UVa 1347 (双线程DP) Tour
题意: 平面上有n个坐标均为正数的点,按照x坐标从小到大一次给出.求一条最短路线,从最左边的点出发到最右边的点,再回到最左边的点.除了第一个和最右一个点其他点恰好只经过一次. 分析: 可以等效为两个人 ...
随机推荐
- HDFS的优缺点
HDFS是一个分布式文件存储系统,前身来自于Google发布的大数据三驾马车之一GFS (Google File System). HDFS的优点: 1.高容错 hdfs具有很高的容错性,数据自动保存 ...
- JavaWeb-网络编程
Java网络编程 推荐阅读: 计算机网络:https://www.cnblogs.com/zwtblog/tag/计算机网络/ 计算机网络基础 利用通信线路和通信设备,将地理位置不同的.功能独立的多台 ...
- oracle plsql手动修改数据
转至:https://blog.csdn.net/Ranchonono/article/details/87690830?spm=1001.2101.3001.6650.1&utm_mediu ...
- Chrome:插件安装
1.首先要下载一油猴插件管理器 得到crx文件 2.打开'扩展程序',在Chrome右上角 3.启动开发者模式(右上角),然后将油猴crx文件拖入界面中,会自动安装油猴 安装完成后,在工具栏中会出现油 ...
- CNN(卷积神经网络)入门
参考博文: 深度学习基础--卷积--1*1的卷积核与全连接的区别:https://blog.csdn.net/wydbyxr/article/details/84061410 如何理解卷积神经网络中的 ...
- 使用Three.js实现神奇的3D文字悬浮效果
声明:本文涉及图文和模型素材仅用于个人学习.研究和欣赏,请勿二次修改.非法传播.转载.出版.商用.及进行其他获利行为. 背景 在 Three.js Journey 课程示例中,提供了一个使用 Thre ...
- keepass实践
参考软件教程 篇一:从入门到熟练:KeePass全网最详使用指南 运行之后快到来不及截图,就是这么速
- BUG | ValueError: Shape mismatch: The shape of labels (received (320,)) should equal the shape of logits except for the last dimension (received (64, 5)).
1 TensorFlow报错 报错信息: 2 报错原因 字面原因: 这个问题是由于输出层的类别数和训练数据shape不同导致. 底层原因: Step1 : 代码中,我通过ImageDataGenera ...
- 微信小程序两点之间的距离
1:申请key: https://lbs.qq.com/dev/console/application/mine 网址: https://note.youdao.com/ynoteshare/inde ...
- tp5 webupload文件上传至七牛云
1:composer安装: composer require qiniu/php-sdk 2: 配置使用: 在tp5.1的配置文件app.php中配置七牛云的参数 'qiniu' => [ 'a ...