提到同步,我们一般首先想到的是lock,synchronized,但java中有一套更加轻量级的同步方式即atomic类。java的并发原子包里面提供了很多可以进行原子操作的类,比如:

  • AtomicInteger
  • AtomicBoolean
  • AtomicLong
  • AtomicReference

下面以AtomicInteger类为例:

package com.javaBase.LineDistance;

import java.util.concurrent.atomic.AtomicInteger;

/**
* 〈一句话功能简述〉;
* 〈功能详细描述〉
*
* @author jxx
* @see [相关类/方法](可选)
* @since [产品/模块版本] (可选)
*/
public class TestAtomic { public static AtomicInteger atomicInteger = new AtomicInteger(0); public static void main(String[] args) throws InterruptedException{
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
for (int i=0;i<1000;i++) {
atomicInteger.incrementAndGet();
}
}
});
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
for (int i=0;i<1000;i++) {
atomicInteger.incrementAndGet();
}
}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("最终结果:" + atomicInteger);
}
}

运行结果:

最终结果:2000

由结果可知,atomicInteger类是线程安全的。下面看看incrementAndGet()方法是如何实现的,源码如下:

/**
* Atomically increments by one the current value.
*
* @return the updated value
*/
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}

/** 其中getIntVolatile和compareAndSwapInt都是native方法
  * getIntVolatile是获取当前的期望值
  * compareAndSwapInt就是我们平时说的CAS(compare and swap),通过比较如果内存区的值没有改变,那么就用新值直接给该内存区赋值
  */
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5;
}

  可以看到原子性的实现没有用synchronized,说明是非阻塞同步。最核心的方法是compareAndSwapInt,也就是所谓的CAS操作。CAS操作依赖底层硬件的CAS指令,CAS指令有两个步骤:冲突检测和更新操作,但是这两个步骤合起来成为一个原子性操作。CAS指令需要3个操作数:内存位置(V),旧的预期值(A),新值(B)。CAS指令执行时,首先比较内存位置V处的值和A的值是否相等(冲突检测),如果相等,就用新值B覆盖A(更新操作),否则,就什么也不做。所以,一般循环执行CAS操作,直到成功为止。

private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}

  Unsafe类是在sun.misc包下,不属于Java标准。但是很多Java的基础类库,包括一些被广泛使用的高性能开发库都是基于Unsafe类开发的,比如Netty、Cassandra、Hadoop、Kafka等。Unsafe类在提升Java运行效率,增强Java语言底层操作能力方面起了很大的作用。 Unsafe类使Java拥有了像C语言的指针一样操作内存空间的能力,同时也带来了指针的问题。过度的使用Unsafe类会使得出错的几率变大,因此Java官方并不建议使用的,官方文档也几乎没有。 通常我们最好也不要使用Unsafe类,除非有明确的目的,并且也要对它有深入的了解才行。

  CAS也并非完美的,它会导致ABA问题,就是说,当前内存的值一开始是A,被另外一个线程先改为B然后再改为A,那么当前线程访问的时候发现是A,则认为它没有被其他线程访问过。在某些场景下这样是存在错误风险的。比如在链表中。那么如何解决这个ABA问题呢,大多数情况下乐观锁的实现都会通过引入一个版本号标记这个对象,每次修改版本号都会变话,比如使用时间戳作为版本号,这样就可以很好的解决ABA问题。在JDK中提供了AtomicStampedReference类来解决这个问题,思路是一样的。这个类也维护了一个int类型的标记stamp,每次更新数据的时候顺带更新一下stamp。

AtomicStampedReference使用代码:

package com.wangjun.thread;

import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference; public class ABA { // 普通的原子类,存在ABA问题
AtomicInteger a1 = new AtomicInteger(10);
// 带有时间戳的原子类,不存在ABA问题,第二个参数就是默认时间戳,这里指定为0
AtomicStampedReference<Integer> a2 = new AtomicStampedReference<Integer>(10, 0); public static void main(String[] args) {
ABA a = new ABA();
a.test();
} public void test() {
new Thread1().start();
new Thread2().start();
new Thread3().start();
new Thread4().start();
} class Thread1 extends Thread {
@Override
public void run() {
a1.compareAndSet(10, 11);
a1.compareAndSet(11, 10);
}
}
class Thread2 extends Thread {
@Override
public void run() {
try {
Thread.sleep(200); // 睡0.2秒,给线程1时间做ABA操作
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("AtomicInteger原子操作:" + a1.compareAndSet(10, 11));
}
}
class Thread3 extends Thread {
@Override
public void run() {
try {
Thread.sleep(500); // 睡0.5秒,保证线程4先执行
} catch (InterruptedException e) {
e.printStackTrace();
}
int stamp = a2.getStamp();
a2.compareAndSet(10, 11, stamp, stamp + 1);
stamp = a2.getStamp();
a2.compareAndSet(11, 10, stamp, stamp + 1);
}
}
class Thread4 extends Thread {
@Override
public void run() {
int stamp = a2.getStamp();
try {
Thread.sleep(1000); // 睡一秒,给线程3时间做ABA操作
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("AtomicStampedReference原子操作:" + a2.compareAndSet(10, 11, stamp, stamp + 1));
}
}
}

可以看到使用AtomicStampedReference进行compareAndSet的时候,除了要验证数据,还要验证时间戳。如果数据一样,但是时间戳不一样,那么这个数据其实也被修改过了。

并发包中automic类的原理的更多相关文章

  1. 【转载】Lua中实现类的原理

    原文地址 http://wuzhiwei.net/lua_make_class/ 不错,将metatable讲的很透彻,我终于懂了. --------------------------------- ...

  2. Java并发包中Semaphore的工作原理、源码分析及使用示例

    1. 信号量Semaphore的介绍 我们以一个停车场运作为例来说明信号量的作用.假设停车场只有三个车位,一开始三个车位都是空的.这时如果同时来了三辆车,看门人允许其中它们进入进入,然后放下车拦.以后 ...

  3. Java并发包中常用类小结(一)

    从JDK1.5以后,Java为我们引入了一个并发包,用于解决实际开发中经常用到的并发问题,那我们今天就来简单看一下相关的一些常见类的使用情况. 1.ConcurrentHashMap Concurre ...

  4. 关于boost中enable_shared_from_this类的原理分析

    首先要说明的一个问题是:如何安全地将this指针返回给调用者.一般来说,我们不能直接将this指针返回.想象这样的情况,该函数将this指针返回到外部某个变量保存,然后这个对象自身已经析构了,但外部变 ...

  5. Java并发包中线程池ThreadPoolExecutor原理探究

    一.线程池简介 线程池的使用主要是解决两个问题:①当执行大量异步任务的时候线程池能够提供更好的性能,在不使用线程池时候,每当需要执行异步任务的时候直接new一个线程来运行的话,线程的创建和销毁都是需要 ...

  6. Java并发包中CountDownLatch的工作原理、使用示例

    1. CountDownLatch的介绍 CountDownLatch是一个同步工具,它主要用线程执行之间的协作.CountDownLatch 的作用和 Thread.join() 方法类似,让一些线 ...

  7. Java并发包中CyclicBarrier的工作原理、使用示例

    1. CyclicBarrier的介绍与源码分析 CyclicBarrier 的字面意思是可循环(Cyclic)使用的屏障(Barrier).它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时 ...

  8. Java并发包中Lock的实现原理

    1. Lock 的简介及使用 Lock是java 1.5中引入的线程同步工具,它主要用于多线程下共享资源的控制.本质上Lock仅仅是一个接口(位于源码包中的java\util\concurrent\l ...

  9. Java并发包中常用类小结(二)

    6.ThredPoolExecutor ThredPoolExecutor是基于命令模式下的一个典型的线程池的实现,主要通过一些策略实现一个典型的线程池,目前已知的策略有ThreadPoolExecu ...

随机推荐

  1. 什么是Ajax?全面了解

    一:Ajax 引入Ajax: 我们知道,前端页面想要和后端进行数据交互,可以通过以下方式 将参数添加到url中,后端通过get方式从url中获取数据 GET请求 前端页面通过form表单,将数据以ge ...

  2. 为什么说国产BI更适合国内企业?

    ​就算国外BI发展迅速,产品更加完善成熟,但对国内的企业来说,使用起来难免"水土不服",何况还有服务对接过程中的繁琐程.今天就来讨论一下,国内BI和国外BI到底该怎么选择? 国外B ...

  3. 大数据BI系统搭建对企业经营的作用有哪些

    随着数据化时代的到来,企业为了适应高速发展的业务.维持自身更好的发展,纷纷开始寻求适合自身企业发展的BI系统.为什么BI系统会受到企业如此的青睐?BI系统对企业经营究竟有哪些方面的作用呢? 下面,小编 ...

  4. 【C# IO 操作】使用StringWriter和StringReader的好处

    当你有一组应用程序接口(API)只允许用Writer或Reader作为输入,但你又想使用String,这时可以用StringWriter或StringReader. 假设有下面这样一个process方 ...

  5. [炼丹术]DeepLabv3+训练模型学习总结

    DeepLabv3+训练模型学习总结 一.DeepLabs3+介绍 DeepLabv3是一种语义分割架构,它在DeepLabv2的基础上进行了一些修改.为了处理在多个尺度上分割对象的问题,设计了在级联 ...

  6. redis主从复制,哨兵以及集群搭建部署

    redis主从复制 1.redis支持多实例的功能,一台机器上,可以运行多个单个的redis数据库 环境准备,运行3个redis数据库,达到 1主 2从的配置 主库 6379.conf port 63 ...

  7. redis缓存雪崩和缓存穿透

    缓存雪崩:由于原有的缓存过期失效,新的缓存还没有缓存进来,有一只请求缓存请求不到,导致所有请求都跑去了数据库,导致数据库IO.内存和CPU眼里过大,甚至导致宕机,使得整个系统崩溃. 解决思路:1,采用 ...

  8. MySQL第四讲

    昨日内容回顾 表与表之间建关系(外键) """ 表与表之间最多只有四种关系 一对多 多对多 一对一 没有关系 在确定表与表之间的关系的时候记住一句话 换位思考 " ...

  9. 搞懂MySQL(各种)索引类型及其区别

    索引的概念介绍: 1.聚集索引 聚集索引:指索引项的排序方式和表中数据记录排序方式一致的索引  也就是说聚集索引的顺序就是数据的物理存储顺序.它会根据聚集索引键的顺序来存储表中的数据,即对表的数据按索 ...

  10. 11 Java的方法 递归

    6.递归 A方法调用B方法,我们很容易理解! 递归就是:A方法调用A方法!就是自己调用自己 利用递归可以用简单的程序来解决一些复杂的问题. 它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较 ...