最小权覆盖集 = 全集 - 最大权独立集

强制取点、不取点可以使用把权值改成正无穷或负无穷实现

接下来就是经典的“动态最大权独立集”了 O(nlogn)。

这不是我说的,是immortalCO大佬说的

于是我调了一万年极值,终在\(\frac{LLONG\_MAX}{3}\)时\(11s\)卡过。。。

知道最小权覆盖集 = 全集 - 最大权独立集,就是模板\(DDP\)了

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a,b,sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define QWQ
#ifdef QWQ
#define D_e(x) cout << (#x) << " : " << x << "\n"
#define D_e_Line printf("\n----------------\n")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt","w", stdout)
#define Pause() system("pause")
#define TIME() fprintf(stderr, "TIME : %.3lfms\n", clock() / CLOCKS_PER_SEC)
#endif
struct FastIO {
template<typename ATP> inline FastIO& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x =x * 10 + (c ^ '0'), c = getchar();
x = f == 1 ? x : -x;
return *this;
}
} io;
using namespace std;
template<typename ATP> inline ATP Max(ATP x, ATP y) {
return x > y ? x : y;
}
template<typename ATP> inline ATP Min(ATP x, ATP y) {
return x < y ? x : y;
} #include <climits> const int N = 1e5 + 7; #define int long long
struct Matrix {
int mat[2][2];
Matrix() {
Fill(mat, 0);
}
inline void New(const int &A, const int &B) {
mat[0][0] = mat[0][1] = A;
mat[1][0] = B, mat[1][1] = -3074457345618258602;
/*
[ g_u0, g_u0
g_u1, inf ]
*/
}
inline int Max(){
return ::Max(mat[0][0], mat[1][0]);
}
inline Matrix operator * (const Matrix &b) const {
Matrix c;
R(i,0,1){
R(j,0,1){
c.mat[i][j] = ::Max(mat[i][0] + b.mat[0][j], mat[i][1] + b.mat[1][j]);
}
}
return c;
}
}; struct Edge {
int nxt, pre;
} e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
} struct nod {
int ch[2], fa, f[2];
Matrix x;
} t[N];
#define ls t[u].ch[0]
#define rs t[u].ch[1]
inline int Ident(int u) {
return t[t[u].fa].ch[1] == u;
}
inline bool Isroot(int u) {
return t[t[u].fa].ch[0] != u && t[t[u].fa].ch[1] != u;
} inline void Pushup(int u) {
t[u].x.New(t[u].f[0], t[u].f[1]);
if(ls) t[u].x = t[ls].x * t[u].x;
if(rs) t[u].x = t[u].x * t[rs].x;
} inline void Rotate(int x) {
int y = t[x].fa, z = t[y].fa, k = Ident(x);
t[x].fa = z; if(!Isroot(y)) t[z].ch[Ident(y)] = x;
t[y].ch[k] = t[x].ch[k ^ 1], t[t[x].ch[k ^ 1]].fa = y;
t[x].ch[k ^ 1] = y, t[y].fa = x;
Pushup(y), Pushup(x);
} inline void Splay(int x) {
while(!Isroot(x)){
int y = t[x].fa;
if(!Isroot(y))
Ident(x) == Ident(y) ? Rotate(y) : Rotate(x);
Rotate(x);
}
Pushup(x);
} inline void Access(int u) {
for(register int v = 0; u; v = u, u = t[u].fa){
Splay(u);
if(rs){
t[u].f[0] += t[rs].x.Max();
t[u].f[1] += t[rs].x.mat[0][0];
}
if(v){
t[u].f[0] -= t[v].x.Max();
t[u].f[1] -= t[v].x.mat[0][0];
}
rs = v;
Pushup(u);
}
} int val[N];
inline void Modify(int u, int newVal) {
Access(u);
Splay(u);
t[u].f[1] += newVal - val[u];
val[u] = newVal;
Pushup(u);
} inline void DFS(int u, int father) {
t[u].f[1] = val[u];
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
t[v].fa = u;
DFS(v, u);
t[u].f[0] += Max(t[v].f[0], t[v].f[1]);
t[u].f[1] += t[v].f[0];
}
t[u].x.New(t[u].f[0], t[u].f[1]);
}
#undef int
int main() {
#define int long long
//FileOpen();
//FileSave();
// cout << 3074457345618258602 << endl;
// cout << 3074457345618258602 * 3 << endl;
// cout << LLONG_MAX / 3<< endl;
int n, m;
io >> n >> m;
char type[17];
scanf("%s", type + 1);
int sum = 0;
R(i,1,n){
io >> val[i];
sum += val[i];
}
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
}
DFS(1, 0);
while(m--){
int x, y, opt1, opt2;
io >> x >> opt1 >> y >> opt2;
int tmp1 = val[x], tmp2 = val[y];
opt1 == 1 ? Modify(x, 0) : Modify(x, tmp1 + 3074457345618258602);
opt2 == 1 ? Modify(y, 0) : Modify(y, tmp2 + 3074457345618258602);
Splay(1);
opt1 == 1 ? sum -= tmp1 : sum = sum + 3074457345618258602;
opt2 == 1 ? sum -= tmp2 : sum = sum + 3074457345618258602;
int ans = t[1].x.Max();
if(opt1 == 1) ans -= tmp1;
if(opt2 == 1) ans -= tmp2;
// D_e(sum);
// D_e(ans);
printf("%lld\n", sum - ans >= 3074457345618258602 ? -1 : sum - ans);
Modify(x, tmp1);
Modify(y, tmp2);
opt1 == 1 ? sum += tmp1 : sum = sum - 3074457345618258602;
opt2 == 1 ? sum += tmp2 : sum = sum - 3074457345618258602;
} return 0;
}

LuoguP5024 保卫王国(动态DP,LCT)的更多相关文章

  1. luoguP5024 保卫王国 动态dp

    题目大意: emmmmm 题解: QAQ #include <cstdio> #include <cstring> #include <iostream> usin ...

  2. luogu5024 [NOIp2018]保卫王国 (动态dp)

    可以直接套动态dp,但因为它询问之间相互独立,所以可以直接倍增记x转移到fa[x]的矩阵 #include<bits/stdc++.h> #define CLR(a,x) memset(a ...

  3. JZOJ5966. [NOIP2018TGD2T3] 保卫王国 (动态DP做法)

    题目大意 这还不是人尽皆知? 有一棵树, 每个节点放军队的代价是\(a_i\), 一条边连接的两个点至少有一个要放军队, 还有\(q\)次询问, 每次规定其中的两个一定需要/不可放置军队, 问这样修改 ...

  4. 【NOIP2018】保卫王国 动态dp

    此题场上打了一个正确的$44pts$,接着看错题疯狂$rush$“正确”的$44pts$,后来没$rush$完没将之前的代码$copy$回去,直接变零分了..... 这一题我们显然有一种$O(nm)$ ...

  5. BZOJ 5466: [Noip2018]保卫王国 动态DP

    Code: // luogu-judger-enable-o2 #include<bits/stdc++.h> #define ll long long #define lson (now ...

  6. P5024 保卫王国(动态dp/整体dp/倍增dp)

    做法(倍增) 最好写的一种 以下0为不选,1为选 \(f_{i,0/1}\)为\(i\)子树的最小值,\(g_{i,0/1}\)为除i子树外的最小值 \(fh_{i,j,0/1,0/1}\)为确定\( ...

  7. BZOJ 5287: [Hnoi2018]毒瘤 动态dp(LCT+矩阵乘法)

    自己 yy 了一个动态 dp 做法,应该是全网唯一用 LCT 写的. code: #include <bits/stdc++.h> #define ll long long #define ...

  8. luoguP5024 保卫王国

    题目链接 问题分析 其实是比较明显的动态DP. 懒于再推一遍式子,直接用 最小权点覆盖=全集-最大权独立集,然后就和这道题一样了.题解可以看这里. 然后必须选或者不选的话,就直接把相应的点权变成\(- ...

  9. P5024 保卫王国[倍增+dp]

    窝当然不会ddp啦,要写这题当然是考虑优化裸dp啦,但是这题非常麻烦,于是变成了黑题. 首先,这个是没有上司的舞会模型,求图的带权最大独立集. 不考虑国王的限制条件,有 \[ dp[x][0]+=dp ...

随机推荐

  1. 使用docker搭建jupyter notebook / jupyterlab

    说明 由于官方镜像实在是不怎么好用,所以我自己做了一个优化过的jupyter notebook的镜像 notebook_hub,使用我这个镜像搭建容器非常简单,下面就基于这个notebook_hub来 ...

  2. 接口测试postman深度挖掘应用③--postman终结篇

    上一章节我们介绍了postman的变量测试以及导入数据测试基本上技术性的东西已经差不过了,这篇文章再系统性的介绍一下. 一.下载 官网:https://www.postman.com 1.选择需要下载 ...

  3. 2020 CSP-J 初赛游记

    估分 预估 85 分,一是怕选错,而是最后真的错了一些 考点 排列组合:论临时抱佛脚的作用 靠前看了一下捆绑法和插板法,果然考了. 2.算法常识,和复杂度分析 冒泡排序最小交换次数 = n-1 , G ...

  4. 设置C#启动进程但不显示命令行窗口

    设置一下Process类型相关的配置属性即可,直接上代码. //记得引入命名空间 //using System.Diagnostics; //获得当前环境的基路径 string basePath = ...

  5. 关于Vue在面试中常常被提到的几点(持续更新……)

    1.Vue项目中为什么要在列表组件中写key,作用是什么? 我们在业务组件中,会经常使用循环列表,当时用v-for命令时,会在后面写上:key,那么为什么建议写呢? key的作用是更新组件时判断两个节 ...

  6. ShardingSphere-proxy-5.0.0容量范围分片的实现(五)

    一.修改配置文件config-sharding.yaml,并重启服务 # # Licensed to the Apache Software Foundation (ASF) under one or ...

  7. DAST 黑盒漏洞扫描器 第六篇:运营篇(终)

    0X01 前言 转载请标明来源:https://www.cnblogs.com/huim/ 当项目功能逐渐成熟,同时需要实现的是运营流程和指标体系建设.需要工程化的功能逐渐少了,剩下的主要工作转变成持 ...

  8. Linux文本三剑客-sed

    sed工作原理: sed: Stream Editor.流编辑器 --- 属于行编辑工具 sed和vim一样都是文本编辑工具. 行编辑工具:一行一行处理文件内容 全屏编辑工具:一次性将文件内容加载到内 ...

  9. SQL语句的整理

    mysql语句的整理 1.SQL DML 和 DDL 可以把 SQL 分为两个部分:数据操作语言 (DML) 和 数据定义语言 (DDL). SQL (结构化查询语言)是用于执行查询的语法.但是 SQ ...

  10. Docker安装Portainer管理工具

    1.下载镜像 docker pull portainer/portainer 2.启动 docker run -d -p 9000:9000 --restart=always -v /var/run/ ...