最小权覆盖集 = 全集 - 最大权独立集

强制取点、不取点可以使用把权值改成正无穷或负无穷实现

接下来就是经典的“动态最大权独立集”了 O(nlogn)。

这不是我说的,是immortalCO大佬说的

于是我调了一万年极值,终在\(\frac{LLONG\_MAX}{3}\)时\(11s\)卡过。。。

知道最小权覆盖集 = 全集 - 最大权独立集,就是模板\(DDP\)了

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a,b,sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define QWQ
#ifdef QWQ
#define D_e(x) cout << (#x) << " : " << x << "\n"
#define D_e_Line printf("\n----------------\n")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt","w", stdout)
#define Pause() system("pause")
#define TIME() fprintf(stderr, "TIME : %.3lfms\n", clock() / CLOCKS_PER_SEC)
#endif
struct FastIO {
template<typename ATP> inline FastIO& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x =x * 10 + (c ^ '0'), c = getchar();
x = f == 1 ? x : -x;
return *this;
}
} io;
using namespace std;
template<typename ATP> inline ATP Max(ATP x, ATP y) {
return x > y ? x : y;
}
template<typename ATP> inline ATP Min(ATP x, ATP y) {
return x < y ? x : y;
} #include <climits> const int N = 1e5 + 7; #define int long long
struct Matrix {
int mat[2][2];
Matrix() {
Fill(mat, 0);
}
inline void New(const int &A, const int &B) {
mat[0][0] = mat[0][1] = A;
mat[1][0] = B, mat[1][1] = -3074457345618258602;
/*
[ g_u0, g_u0
g_u1, inf ]
*/
}
inline int Max(){
return ::Max(mat[0][0], mat[1][0]);
}
inline Matrix operator * (const Matrix &b) const {
Matrix c;
R(i,0,1){
R(j,0,1){
c.mat[i][j] = ::Max(mat[i][0] + b.mat[0][j], mat[i][1] + b.mat[1][j]);
}
}
return c;
}
}; struct Edge {
int nxt, pre;
} e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v) {
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
} struct nod {
int ch[2], fa, f[2];
Matrix x;
} t[N];
#define ls t[u].ch[0]
#define rs t[u].ch[1]
inline int Ident(int u) {
return t[t[u].fa].ch[1] == u;
}
inline bool Isroot(int u) {
return t[t[u].fa].ch[0] != u && t[t[u].fa].ch[1] != u;
} inline void Pushup(int u) {
t[u].x.New(t[u].f[0], t[u].f[1]);
if(ls) t[u].x = t[ls].x * t[u].x;
if(rs) t[u].x = t[u].x * t[rs].x;
} inline void Rotate(int x) {
int y = t[x].fa, z = t[y].fa, k = Ident(x);
t[x].fa = z; if(!Isroot(y)) t[z].ch[Ident(y)] = x;
t[y].ch[k] = t[x].ch[k ^ 1], t[t[x].ch[k ^ 1]].fa = y;
t[x].ch[k ^ 1] = y, t[y].fa = x;
Pushup(y), Pushup(x);
} inline void Splay(int x) {
while(!Isroot(x)){
int y = t[x].fa;
if(!Isroot(y))
Ident(x) == Ident(y) ? Rotate(y) : Rotate(x);
Rotate(x);
}
Pushup(x);
} inline void Access(int u) {
for(register int v = 0; u; v = u, u = t[u].fa){
Splay(u);
if(rs){
t[u].f[0] += t[rs].x.Max();
t[u].f[1] += t[rs].x.mat[0][0];
}
if(v){
t[u].f[0] -= t[v].x.Max();
t[u].f[1] -= t[v].x.mat[0][0];
}
rs = v;
Pushup(u);
}
} int val[N];
inline void Modify(int u, int newVal) {
Access(u);
Splay(u);
t[u].f[1] += newVal - val[u];
val[u] = newVal;
Pushup(u);
} inline void DFS(int u, int father) {
t[u].f[1] = val[u];
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
t[v].fa = u;
DFS(v, u);
t[u].f[0] += Max(t[v].f[0], t[v].f[1]);
t[u].f[1] += t[v].f[0];
}
t[u].x.New(t[u].f[0], t[u].f[1]);
}
#undef int
int main() {
#define int long long
//FileOpen();
//FileSave();
// cout << 3074457345618258602 << endl;
// cout << 3074457345618258602 * 3 << endl;
// cout << LLONG_MAX / 3<< endl;
int n, m;
io >> n >> m;
char type[17];
scanf("%s", type + 1);
int sum = 0;
R(i,1,n){
io >> val[i];
sum += val[i];
}
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
}
DFS(1, 0);
while(m--){
int x, y, opt1, opt2;
io >> x >> opt1 >> y >> opt2;
int tmp1 = val[x], tmp2 = val[y];
opt1 == 1 ? Modify(x, 0) : Modify(x, tmp1 + 3074457345618258602);
opt2 == 1 ? Modify(y, 0) : Modify(y, tmp2 + 3074457345618258602);
Splay(1);
opt1 == 1 ? sum -= tmp1 : sum = sum + 3074457345618258602;
opt2 == 1 ? sum -= tmp2 : sum = sum + 3074457345618258602;
int ans = t[1].x.Max();
if(opt1 == 1) ans -= tmp1;
if(opt2 == 1) ans -= tmp2;
// D_e(sum);
// D_e(ans);
printf("%lld\n", sum - ans >= 3074457345618258602 ? -1 : sum - ans);
Modify(x, tmp1);
Modify(y, tmp2);
opt1 == 1 ? sum += tmp1 : sum = sum - 3074457345618258602;
opt2 == 1 ? sum += tmp2 : sum = sum - 3074457345618258602;
} return 0;
}

LuoguP5024 保卫王国(动态DP,LCT)的更多相关文章

  1. luoguP5024 保卫王国 动态dp

    题目大意: emmmmm 题解: QAQ #include <cstdio> #include <cstring> #include <iostream> usin ...

  2. luogu5024 [NOIp2018]保卫王国 (动态dp)

    可以直接套动态dp,但因为它询问之间相互独立,所以可以直接倍增记x转移到fa[x]的矩阵 #include<bits/stdc++.h> #define CLR(a,x) memset(a ...

  3. JZOJ5966. [NOIP2018TGD2T3] 保卫王国 (动态DP做法)

    题目大意 这还不是人尽皆知? 有一棵树, 每个节点放军队的代价是\(a_i\), 一条边连接的两个点至少有一个要放军队, 还有\(q\)次询问, 每次规定其中的两个一定需要/不可放置军队, 问这样修改 ...

  4. 【NOIP2018】保卫王国 动态dp

    此题场上打了一个正确的$44pts$,接着看错题疯狂$rush$“正确”的$44pts$,后来没$rush$完没将之前的代码$copy$回去,直接变零分了..... 这一题我们显然有一种$O(nm)$ ...

  5. BZOJ 5466: [Noip2018]保卫王国 动态DP

    Code: // luogu-judger-enable-o2 #include<bits/stdc++.h> #define ll long long #define lson (now ...

  6. P5024 保卫王国(动态dp/整体dp/倍增dp)

    做法(倍增) 最好写的一种 以下0为不选,1为选 \(f_{i,0/1}\)为\(i\)子树的最小值,\(g_{i,0/1}\)为除i子树外的最小值 \(fh_{i,j,0/1,0/1}\)为确定\( ...

  7. BZOJ 5287: [Hnoi2018]毒瘤 动态dp(LCT+矩阵乘法)

    自己 yy 了一个动态 dp 做法,应该是全网唯一用 LCT 写的. code: #include <bits/stdc++.h> #define ll long long #define ...

  8. luoguP5024 保卫王国

    题目链接 问题分析 其实是比较明显的动态DP. 懒于再推一遍式子,直接用 最小权点覆盖=全集-最大权独立集,然后就和这道题一样了.题解可以看这里. 然后必须选或者不选的话,就直接把相应的点权变成\(- ...

  9. P5024 保卫王国[倍增+dp]

    窝当然不会ddp啦,要写这题当然是考虑优化裸dp啦,但是这题非常麻烦,于是变成了黑题. 首先,这个是没有上司的舞会模型,求图的带权最大独立集. 不考虑国王的限制条件,有 \[ dp[x][0]+=dp ...

随机推荐

  1. GDKOI 2021 Day1 TG 。。。

    看着一群群比 LHF , HQX 还强的大佬涌进了机房,本蒟蒻表示慌得一批 T1 讲题人说最简单的签到题本蒟蒻表示... \(Update\) 用 ds , dt 两个变量记录点 i 连向 s 或 t ...

  2. Docker容器(centos)安装zabbix

    zabbix是一个基于WEB界面提供分布式系统监视以及网络监视功能的企业级的开源解决方案.--百度百科 zabbix介绍 zabbix主要有zabbix-server及zabbix-agent组成,z ...

  3. canal的使用

    一.简介 canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费早期阿里巴巴因为杭州和美国双机房部署,存在跨机房同步的业务需求,实 ...

  4. nodeJS与MySQL实现分页数据以及倒序数据

    大家在做项目时肯定会遇到列表类的数据,如果在前台一下子展示,速度肯定很慢,那么我们可以分页展示,比如说100条数据,每10条一页,在需要的时候加载一页,这样速度肯定会变快了.那么这里我给大家介绍如何在 ...

  5. 简述基于CPU的机器码运行过程

    引言:会写日志的人不一定是优秀的人,但优秀的人往往是会写日志的 这里涉及五个部分,胡歌,林拜,贾以枚,罗伊人,冯眷眷-林拜老婆 依次对应CPU里的控制器, CPU里的寄存器,存储器,输入电路,输出电路 ...

  6. 简单ELK配置实现生产级别的日志采集和查询实践

    概述 生产问题 集群规模如何规划? 集群中节点角色如何规划? 集群之脑裂问题如何避免? 索引分片如何规划? 分片副本如何规划? 集群规划 准备条件 先估算当前系统的数据量和数据增长趋势情况. 现有服务 ...

  7. Jenkins+Svn+Docker搭建持续集成环境 自动部署

    一.准备工作: 两台服务器:192.168.206.212,192.168.206.213 自己新建一个maven项目 其中两台机子做下面的软件配置 212机子: 安装expect并配置: 安装jen ...

  8. idea显示 RunDashboard ,多个启动项时列表显示

    在.idea(项目所在文件夹中)下的workspace.xml文件中找到 <component name="RunDashboard"> 标签,然后添加如下节点 < ...

  9. 面向个性化需求的在线云数据库混合调优系统 | SIGMOD 2022入选论文解读

    SIGMOD 数据管理国际会议是数据库领域具有最高学术地位的国际性会议,位列数据库方向顶级会议之首.近日,腾讯云数据库团队的最新研究成果入选 SIGMOD 2022 Research Full Pap ...

  10. Elasticsearch深度应用(上)

    索引文档写入和近实时搜索原理 基本概念 Segments in Lucene 众所周知,Elasticsearch存储的基本单元是shard,ES种一个index可能分为多个shard,事实上每个sh ...