LuoguP4219 [BJOI2014]大融合(LCT)
早上考试想用\(LCT\)维护联通块\(size\),现在才发现\(LCT\)的\(size\)有虚实之分
\(Link\)与\(Acess\)中虚实变,干他丫的
\(Splay\)中只是相对关系,没有虚实变,因此不搞它
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define ON_DEBUGG
#ifdef ON_DEBUGG
#define D_e_Line printf("-----------\n")
#define D_e(x) std::cout << (#x) << " : " <<x << "\n"
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define Pause() system("pause")
#include <ctime>
#define TIME() fprintf(stderr, "\nTIME : %.3lfms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define FileOpen() ;
#define FilSave ;
#define Pause() ;
#define TIME() ;
#endif
struct ios {
template<typename ATP> ios& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x *= f;
return *this;
}
}io;
using namespace std;
template<typename ATP> inline ATP Min(ATP a, ATP b) {
return a < b ? a : b;
}
template<typename ATP> inline ATP Max(ATP a, ATP b) {
return a > b ? a : b;
}
template<typename ATP> inline ATP Abs(ATP a) {
return a < 0 ? -a : a;
}
const int N = 1e5 + 7;
struct LCT {
int ch[2], fa, siz, sz; // siz : true edge, sz : virtual edge
bool rev;
} t[N];
#define ls t[u].ch[0]
#define rs t[u].ch[1]
inline int Ident(int &u) {
return t[t[u].fa].ch[1] == u;
}
inline bool IsRoot(int &u) {
return t[t[u].fa].ch[0] != u && t[t[u].fa].ch[1] != u;
}
inline void Pushup(int &u) {
if(u) t[u].siz = t[ls].siz + t[rs].siz + t[u].sz + 1;
// left + right + virtual + self
}
inline void Pushrev(int u) {
Swap(ls, rs);
t[u].rev ^= 1;
}
inline void Pushdown(int u) {
if(!t[u].rev) return;
if(ls) Pushrev(ls);
if(rs) Pushrev(rs);
t[u].rev = 0;
}
inline void Rotate(int x) {
int y = t[x].fa, z = t[y].fa, k = Ident(x);
t[x].fa = z; if(!IsRoot(y)) t[z].ch[Ident(y)] = x;
t[y].ch[k] = t[x].ch[k ^ 1], t[t[x].ch[k ^ 1]].fa = y;
t[x].ch[k ^ 1] = y, t[y].fa = x;
Pushup(y), Pushup(x);
}
int sta[N], top;
inline void Splay(int u) {
int x = u;
while(!IsRoot(u)){
sta[++top] = u;
u = t[u].fa;
}
sta[++top] = u;
while(top) Pushdown(sta[top--]);
while(!IsRoot(x)){
int y = t[x].fa;
if(!IsRoot(y)){
Ident(x) == Ident(y) ? Rotate(y) : Rotate(x);
}
Rotate(x);
}
Pushup(x);
}
inline void Access(int u) {
for(register int v = 0; u; v = u, u = t[u].fa){
Splay(u);
t[u].sz += t[rs].siz - t[v].siz;
t[u].ch[1] = v;
Pushup(u);
}
}
inline void MakeRoot(int u) {
Access(u);
Splay(u);
Pushrev(u);
}
inline void Split(int u, int v) {
MakeRoot(u);
Access(v);
Splay(v);
}
inline void Link(int u, int v) {
Split(u, v);
t[u].fa = v;
t[v].sz += t[u].siz;
}
inline long long Query(int u, int v) {
Split(u, v);
return 1ll * (t[u].sz + 1) * (t[v].sz + 1);
}
//inline void Link(int u, int v) {
// MakeRoot(u);
// MakeRoot(v);
// t[u].fa = v;
// t[v].sz += t[u].siz;
// Pushup(v);
//}
//inline long long Query(int u, int v) {
// MakeRoot(u);
// MakeRoot(v);
// return 1ll * (t[u].sz + 1) * (t[v].sz + 1);
//}
char opt[13];
int main() {
int n, m;
io >> n >> m;
R(i,1,n){
t[i].siz = 1;
t[i].sz = 0;
}
while(m--){
scanf("%s", opt + 1);
int x, y;
io >> x >> y;
if(opt[1] == 'A'){
Link(x, y);
}
else{
printf("%lld\n", Query(x, y));
}
}
return 0;
}

LuoguP4219 [BJOI2014]大融合(LCT)的更多相关文章
- [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...
- 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...
- Luogu4219 BJOI2014 大融合 LCT
传送门 题意:写一个数据结构,支持图上连边(保证图是森林)和询问一条边两端的连通块大小的乘积.$\text{点数.询问数} \leq 10^5$ 图上连边,$LCT$跑不掉 支持子树$size$有点麻 ...
- BZOJ4530[Bjoi2014]大融合——LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...
- BZOJ.4530.[BJOI2014]大融合(LCT)
题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...
- [BJOI2014]大融合(LCT)
题面 luogu bzoj是权限题.. 题解 \(LCT\)维护子树信息 因为\(LCT\)中有一些虚子树,\(splay\)维护不了. 所以要新开一个数组来记录 然后注意\(link\)时 是先\( ...
- 【洛谷 P4219】 [BJOI2014]大融合(LCT)
题目链接 维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq 权当背背模板吧.Flash巨佬的blog里面写了虽然我没看懂. #include <cstdio> #define ...
- bzoj 4530 [Bjoi2014]大融合——LCT维护子树信息
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的si ...
- BZOJ4530:[BJOI2014]大融合(LCT)
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
随机推荐
- 测试平台系列(94) 前置条件该怎么支持Python呢
回顾 上一节我们狠狠操练了一番oss,但我们的任务还很长久,所以我们需要继续打磨我们的功能. 那今天就让我们来思考下,如何在前置条件支持python脚本,多的不说,我们也暂时不考虑其他语言,因为光考虑 ...
- Eclipse for C/C++ 开发环境部署保姆级教程
Eclipse for C/C++ 开发环境部署保姆级教程 工欲善其事,必先利其器. 对开发人员来说,顺手的开发工具必定事半功倍.自学编程的小白不知道该选择那个开发工具,Eclipse作为一个功能强大 ...
- mac M1 php扩展 xlswriter 编译安装爬坑记录
电脑配置 MacBook Pro(14英寸,2021年) 系统版本 macOS Monterey 12.4 芯片 Apple M1 Pro PHP环境 MAMP Pro Version 6.6.1 ( ...
- vue按需引入第三方ui插件优化
components.js import { fullScreenContainer, borderBox12, scrollBoard, loading, borderBox10, borderBo ...
- python删除Android应用及文件夹,就说牛不牛吧
写在前面的一些P话: 碌者劳其心力,懒人使用工具.程序员作为懒人推动社会进步,有目共睹. adb 已提供了开发者可以使用的全部工具,但是重复执行一系列adb命令也令人心烦,所以,如果业务需求固定,直接 ...
- Nacos开机自启
1.添加nacos.service文件 vi /lib/systemd/system/nacos.service 2.将以下内容写到nacos.service文件中 ps:我的nacos路径是/usr ...
- NC16783 [NOIP1998]拼数
NC16783 [NOIP1998]拼数 题目 题目描述 设有 \(n\) 个正整数(\(n ≤ 20\)),将它们联接成一排,组成一个最大的多位整数. 例如:\(n=3\) 时,\(3\) 个整数 ...
- 更强的 JsonPath 兼容性及性能测试之2022版(Snack3,Fastjson2,jayway.jsonpath)
2022年了,重新做了一份json path的兼容性与性能测试.三个市面上流行框架比较性测试. 免责声明:可能测试得方式不对而造成不科学的结果(另外,机器不同结果会有不同),可以留言指出来.以下测试数 ...
- 如何用Fiddler对APP进行网络测试
什么是Fiddler Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的"进出"Fiddler的数据(指co ...
- linux 运行.sh出现 Permission denied
执行.sh脚本时提示如下错误: [root@Dolen2021 redis]# ./startRedis.sh -bash: ./startRedis.sh: Permission denied [r ...