Luogu5367 【模板】康托展开 (康拓展开)
\(n^2\)暴力
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int mod = 998244353;
int fac[1000007];
int n;
inline int Cantor(int *a, int n){
int ans = 1, sum = 0;
R(i,1,n){
R(j,i+1,n){
sum += (a[i] > a[j]);
if(sum > mod) sum -= mod;
}
ans = (ans + 1ll * sum * fac[n - i] % mod) % mod;
sum = 0;
}
return ans;
}
int a[1000007];
int main(){
int n;
io >> n;
fac[0] = 1;
R(i,1,n){
io >> a[i];
fac[i] = 1ll * fac[i - 1] * i % mod;
}
printf("%d", Cantor(a, n));
return 0;
}
BIT优化
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 1000007;
const int mod = 998244353;
int n;
int t[N];
inline void Updata(int x, int w){
for(; x <= n; x += x&-x) t[x] += w;
}
inline int Query(int x){
int sum = 0;
for(; x; x -= x&-x) sum += t[x];
return sum;
}
int a[N];
int main(){
//FileOpen();
io >> n;
int fac = 1;
nR(i,n,1){
io >> a[i];
}
int ans = 0;
R(i,1,n){
int sum = Query(a[i]);
ans = (ans + 1ll * fac * sum % mod) % mod;
fac = 1ll * fac * i % mod;
Updata(a[i], 1);
}
printf("%d\n", ans + 1);
return 0;
}
Luogu5367 【模板】康托展开 (康拓展开)的更多相关文章
- 康拓展开 & 逆康拓展开 知识总结(树状数组优化)
康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...
- USACO 2011 February Silver Cow Line /// 康拓展开模板题 oj22713
题目大意: 输入n k,1-n的排列,k次操作 操作P:输入一个m 输出第m个排列 操作Q:输入一个排列 输出它是第几个排列 Sample Input 5 2P3Q1 2 5 3 4 Sample O ...
- 【康拓展开】及其在求全排列第k个数中的应用
题目:给出n个互不相同的字符, 并给定它们的相对大小顺序,这样n个字符的所有排列也会有一个顺序. 现在任给一个排列,求出在它后面的第i个排列.这是一个典型的康拓展开应用,首先我们先阐述一下什么是康拓展 ...
- bnuoj 1071 拼图++(BFS+康拓展开)
http://www.bnuoj.com/bnuoj/problem_show.php?pid=1071 [题意]:经过四个点的顺逆时针旋转,得到最终拼图 [题解]:康拓展开+BFS,注意先预处理,得 ...
- hdu 1043 pku poj 1077 Eight (BFS + 康拓展开)
http://acm.hdu.edu.cn/showproblem.php?pid=1043 http://poj.org/problem?id=1077 Eight Time Limit: 1000 ...
- 【算法系列学习三】[kuangbin带你飞]专题二 搜索进阶 之 A-Eight 反向bfs打表和康拓展开
[kuangbin带你飞]专题二 搜索进阶 之 A-Eight 这是一道经典的八数码问题.首先,简单介绍一下八数码问题: 八数码问题也称为九宫问题.在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的 ...
- Eight (HDU - 1043|POJ - 1077)(A* | 双向bfs+康拓展开)
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've see ...
- hdu 1043 Eight (八数码问题)【BFS】+【康拓展开】
<题目链接> 题目大意:给出一个3×3的矩阵(包含1-8数字和一个字母x),经过一些移动格子上的数后得到连续的1-8,最后一格是x,要求最小移动步数. 解题分析:本题用BFS来寻找路径,为 ...
- 【HDOJ3567】【预处理bfs+映射+康拓展开hash】
http://acm.hdu.edu.cn/showproblem.php?pid=3567 Eight II Time Limit: 4000/2000 MS (Java/Others) Me ...
- 假期训练五(poj-1077bfs+康拓展开,hdu-2577dp)
题目一:传送门 思路:主要是找到状态, 考虑字母有两种状态,大写和小写, 从小写变为大写的变化方式有两种:保持cap状态,或者按住shift键: 从小写变为大写也有一种变化方式:按住shift键: 看 ...
随机推荐
- 『忘了再学』Shell基础 — 19、使用declare命令声明变量类型
目录 1.declare命令介绍 2.声明数组变量类型 3.声明变量为环境变量 4.声明只读属性 5.补充: 1.declare命令介绍 Shell中所有变量的默认类型是字符串类型,如果你需要进行特殊 ...
- vue新手入门之使用vue框架搭建用户登录注册案例,手动搭建webpack+Vue项目(附源码,图文详解,亲测有效)
前言 本篇随笔主要写了手动搭建一个webpack+Vue项目,掌握相关loader的安装与使用,包括css-loader.style-loader.vue-loader.url-loader.sass ...
- 对于vjudge在有些网络下无法打开的问题
因为有些网络会屏蔽vjudge,所以打开 镜像网址 不行再试试这个:最新镜像网址
- java和.net 双语言开发框架,开源的PaaS平台
当下,我国国内的PaaS平台正在蓬勃发展,各式各样的PaaS平台层出不穷,但万变不离其宗,一个优秀的PaaS平台总有自己独树一帜或与众不同的地方.那么,首先我们要了解下什么是PaaS平台?PaaS是( ...
- 【原创】项目三Raven-2
实战流程 1,C段扫描,并发现目标ip是192.168.186.141 nmap -sP 192.168.186.0/24 扫描目标主机全端口 nmap -p- 192.168.186.141 访问8 ...
- 基于SqlSugar的开发框架循序渐进介绍(8)-- 在基类函数封装实现用户操作日志记录
在我们对数据进行重要修改调整的时候,往往需要跟踪记录好用户操作日志.一般来说,如对重要表记录的插入.修改.删除都需要记录下来,由于用户操作日志会带来一定的额外消耗,因此我们通过配置的方式来决定记录那些 ...
- RPA纳税申报机器人
1.机器人开始工作 2.机器人打开企业内部税务平台,自动下载报税底表 3.机器人自动登录地方税务局,填写报税数据 手工报税10分钟/3个表 VS 机器人报税时间2分钟/3个表 处理时间缩短80% 报税 ...
- vi与vim使用
简介 Vi是一个命令行界面下的文本编辑工具(最早1976年由Bill Joy开发,原名ex),vi 支持就大多数操作系统(最早在BSD上发布)并且功能已经十分强大. 1991年Bram Moolena ...
- JQuery select与radio的取值与赋值
radio 取:$("input[name='NAME']:checked").val(); 赋:$("input[name='NAME'][value='指定值']&q ...
- Cayley 定理与扩展 Cayley 定理
Cayley 定理 节点个数为 \(n\) 的无根标号树的个数为 \(n^{n−2}\) . 这个结论在很多计数类题目中出现,要证明它首先需要了解 \(\text{Prufer}\) 序列的相关内容. ...