DAST 代码分析
DA部分
输入图片大小:
images.size: torch.Size([1, 3, 512, 1024])
labels.size: torch.Size([1, 512, 1024])
input_size = (w, h) # input_size : <class 'tuple'>: (1024, 512)
input_size_target = (w, h) # <class 'tuple'>: (1024, 512)
分割后的特征图大小:
feat_source: ([1, 2048, 65, 129])
pred_source: ([1, 19, 65, 129])
pred_source = interp(pred_source) 上采样后 pred_source 大小变成: ([1, 19, 512, 1024])
创建网络:
1 model = DeeplabMulti(num_classes=args.num_classes)
2 def DeeplabMulti(num_classes=21):
3 model = ResNetMulti(Bottleneck, [3, 4, 23, 2, 1], num_classes)
4 return model
包含注意力的分割网络:
1 class ResNetMulti(nn.Module):
2
3 def forward(self, x, D, domain): # 源域进来就正常打分, 目标域进来就先加权后打分
4 x = self.conv1(x)
5 x = self.bn1(x)
6 x = self.relu(x)
7 x = self.maxpool(x)
8 x1 = self.layer1(x)
9 x2 = self.layer2(x1)
10 x3 = self.layer3(x2)
11 x4 = self.layer4(x3) # ft或者fs
12 if domain == 'source': # source:x4.size: torch.Size([1, 2048, 65, 129]) out.size: torch.Size([1, 19, 65, 129])
13 x4_a4 = x4
14 # 目标域 注意力图加权
15 if domain == 'target': # target:x4.size: torch.Size([1, 2048, 65, 129]) out.size: torch.Size([1, 19, 65, 129])
16 a4 = D[0](x4) #a4 等同于论文中的D(ft) 注意力图
17 a4 = self.tanh(a4) # 防止早期训练时梯度爆炸,tanh激活层作为正则化层
18 a4 = torch.abs(a4) # 绝对值 a4 = |D(ft)|
19 a4_big = a4.expand(x4.size()) # 即a',为了匹配目标域的维度,实现注意力图和目标域按元素相乘
20 x4_a4 = a4_big*x4 + x4 # ft'=ft+ft*a'
21 x5 = self.layer5(x4_a4)
22 out = self.layer6(x5)
23 # print('D[0]',D[0])
24 # print('domain:', domain)
25 # print('x4.size:', x4.size()) # x4.size: torch.Size([1, 2048, 65, 129])
26 # print('out.size:', out.size()) # out.size: torch.Size([1, 19, 65, 129])
27 return x4, out
判别器:(FCDiscriminator输入通道2048,而OutspaceDiscriminator输入通道是19)
model_D = nn.ModuleList([FCDiscriminator(num_classes=num_class_list[i]).train().to(
device) if i < 1 else OutspaceDiscriminator(num_classes=num_class_list[i]).train().to(device) for i in
range(2)])
class FCDiscriminator(nn.Module):
def __init__(self, num_classes, ndf = 64):
# print('num_classes:', num_classes) num_classes: 2048
super(FCDiscriminator, self).__init__()
self.conv1 = nn.Conv2d(num_classes, num_classes//2, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(num_classes//2, num_classes//4, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(num_classes//4, num_classes//8, kernel_size=3, stride=1, padding=1)
self.classifier = nn.Conv2d(num_classes//8, 1, kernel_size=3, stride=1, padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
#self.up_sample = nn.Upsample(scale_factor=32, mode='bilinear')
#self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.classifier(x)
#x = self.up_sample(x)
#x = self.sigmoid(x)
return x
class OutspaceDiscriminator(nn.Module):
def __init__(self, num_classes, ndf = 64):
super(OutspaceDiscriminator, self).__init__()
self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(ndf, ndf*2, kernel_size=4, stride=2, padding=1)
self.conv3 = nn.Conv2d(ndf*2, ndf*4, kernel_size=4, stride=2, padding=1)
self.conv4 = nn.Conv2d(ndf*4, ndf*8, kernel_size=4, stride=2, padding=1)
self.classifier = nn.Conv2d(ndf*8, 1, kernel_size=4, stride=2, padding=1) # 变成通道数为1
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
#self.up_sample = nn.Upsample(scale_factor=32, mode='bilinear')
#self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.conv4(x)
x = self.leaky_relu(x)
x = self.classifier(x)
#x = self.up_sample(x)
#x = self.sigmoid(x)
return x
1 # D[0](x4):
2 # tensor([[[[0.0710, 0.1864, 0.2138, ..., 0.2505, 0.1997, 0.1675],
3 # [0.0946, 0.2139, 0.2130, ..., 0.2979, 0.2266, 0.1543],
4 # [0.1402, 0.2508, 0.2545, ..., 0.3649, 0.3104, 0.1574],
5 # ...,
6 # [0.1940, 0.3481, 0.3824, ..., 0.3082, 0.2303, 0.1237],
7 # [0.1855, 0.2981, 0.3047, ..., 0.2617, 0.1878, 0.0770],
8 # [0.0597, 0.1503, 0.1717, ..., 0.1718, 0.1432, 0.0634]]]],
9 # device='cuda:0', grad_fn= < AddBackward0 >)
1 # D[0]:
2 # FCDiscriminator(
3 # (conv1): Conv2d(2048, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
4 # (conv2): Conv2d(1024, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
5 # (conv3): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
6 # (classifier): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
7 # (leaky_relu): LeakyReLU(negative_slope=0.2, inplace=True)
8 # )
1 # model_D[1]: OutspaceDiscriminator(
2 # (conv1): Conv2d(19, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
3 # (conv2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
4 # (conv3): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
5 # (conv4): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
6 # (classifier): Conv2d(512, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
7 # (leaky_relu): LeakyReLU(negative_slope=0.2, inplace=True)
8 # )
#######开始训练######
train S
# train with source
feat_source, pred_source = model(images, model_D, 'source')
# ResNet返回两层输出结果(特征图),x4和out model_D判别器模型,用来对resnet的x4层作输出,得到注意力图
# print('feat_source',feat_source) feat_source=x4 倒数第二层(输出通道数:2048) ; pred_source=out 最后一层(输出通道数:19(类别数)) 如果是目标域图片,那么,out代表加权后的特征图输出。
pred_source = interp(pred_source) # 源域特征图 参与分割损失计算
loss_seg = seg_loss(pred_source, labels)
loss_seg.backward()
# train with target
feat_target, pred_target = model(images, model_D, 'target')
# print('feat_target.size, pred_target.size:', feat_target.size(), pred_target.size())
# feat_target.size, pred_target.size: torch.Size([1, 2048, 65, 129]) torch.Size([1, 19, 65, 129])
pred_target = interp_target(pred_target)
loss_adv = 0
D_out = model_D[0](feat_target) # 对倒数第二层的T域特征图打分
loss_adv += bce_loss(D_out, torch.FloatTensor(D_out.data.size()).fill_(source_label).to(device))
D_out = model_D[1](F.softmax(pred_target, dim=1)) # 先把最后一层特征图变成概率图,再对概率图打分
# print('model_D[1]:', model_D[1])
loss_adv += bce_loss(D_out, torch.FloatTensor(D_out.data.size()).fill_(source_label).to(device))
loss_adv = loss_adv * 0.01
loss_adv.backward()
optimizer.step()
train D
# train with source
loss_D_source = 0
D_out_source = model_D[0](feat_source.detach())
loss_D_source += bce_loss(D_out_source,
torch.FloatTensor(D_out_source.data.size()).fill_(source_label).to(device))
D_out_source = model_D[1](F.softmax(pred_source.detach(), dim=1))
loss_D_source += bce_loss(D_out_source,
torch.FloatTensor(D_out_source.data.size()).fill_(source_label).to(device))
loss_D_source.backward()
# train with target
loss_D_target = 0
D_out_target = model_D[0](feat_target.detach())
loss_D_target += bce_loss(D_out_target,
torch.FloatTensor(D_out_target.data.size()).fill_(target_label).to(device))
D_out_target = model_D[1](F.softmax(pred_target.detach(), dim=1))
loss_D_target += bce_loss(D_out_target,
torch.FloatTensor(D_out_target.data.size()).fill_(target_label).to(device))
loss_D_target.backward()
optimizer_D.step()
ST部分
images.size: torch.Size([1, 3, 512, 1024])
DAST 代码分析的更多相关文章
- Android代码分析工具lint学习
1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...
- pmd静态代码分析
在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...
- [Asp.net 5] DependencyInjection项目代码分析-目录
微软DI文章系列如下所示: [Asp.net 5] DependencyInjection项目代码分析 [Asp.net 5] DependencyInjection项目代码分析2-Autofac [ ...
- [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(5)(IEnumerable<>补充)
Asp.net 5的依赖注入注入系列可以参考链接: [Asp.net 5] DependencyInjection项目代码分析-目录 我们在之前讲微软的实现时,对于OpenIEnumerableSer ...
- 完整全面的Java资源库(包括构建、操作、代码分析、编译器、数据库、社区等等)
构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化 ...
- STM32启动代码分析 IAR 比较好
stm32启动代码分析 (2012-06-12 09:43:31) 转载▼ 最近开始使用ST的stm32w108芯片(也是一款zigbee芯片).开始看他的启动代码看的晕晕呼呼呼的. 还好在c ...
- 常用 Java 静态代码分析工具的分析与比较
常用 Java 静态代码分析工具的分析与比较 简介: 本文首先介绍了静态代码分析的基 本概念及主要技术,随后分别介绍了现有 4 种主流 Java 静态代码分析工具 (Checkstyle,FindBu ...
- SonarQube-5.6.3 代码分析平台搭建使用
python代码分析 官网主页: http://docs.sonarqube.org/display/PLUG/Python+Plugin Windows下安装使用: 快速使用: 1.下载jdk ht ...
- angular代码分析之异常日志设计
angular代码分析之异常日志设计 错误异常是面向对象开发中的记录提示程序执行问题的一种重要机制,在程序执行发生问题的条件下,异常会在中断程序执行,同时会沿着代码的执行路径一步一步的向上抛出异常,最 ...
- [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(2)
在 DependencyInjection项目代码分析4-微软的实现(1)中介绍了“ServiceTable”.“ServiceEntry”.“IGenericService”.“IService”. ...
随机推荐
- React使用高阶组件与Hooks实现权限拦截教程
导读 高阶组件就是接受一个组件作为参数并返回一个新组件(功能增强的组件)的函数.这里需要注意高阶组件是一个函数,并不是组件,这一点一定要注意,本文给大家分享React高阶组件使用小结,一起看看吧 高阶 ...
- 17.SQLite数据库存储
Android系统内置一个SQLite数据库,SQLite是一款轻量级的关系型数据库,它的运算速度非常快,占用资源很少,通常只需要几百K的内存就足够了. SQLite不仅支持标准的SQL语法,还遵循了 ...
- 使用layui实现分页展示数据库的数据
layui是一个前端 UI 框架,内置了js代码,所以我们可以直接使用内置的分页 首先要用到layui的官网手册https://www.layui.com/ 1.进入手册页面的 "示例&qu ...
- 直播软件搭建,姓名,身份证input验证过滤
直播软件搭建,姓名,身份证input验证过滤 姓名验证:需求,可输入英文.汉字 for(let i=0;i<e.length;i++){ if(/^[a-zA-Z\u4e00-\u9fa5]+ ...
- CAD专用卸载工具,完美彻底卸载清除干净cad各种残留注册表和文件。
CAD专用卸载工具,完美彻底卸载清除干净cad各种残留注册表和文件.有的同学由于一些原因想把cad卸载掉然后重新安装,但是cad安装到一半就失败了或者显示已安装或者未完成,还有的同学会遇到" ...
- jenkin创建任务
第一步新建项目 第二步创建任务名称
- [转]B树与B+树----mysql的索引结构
B树 和B+树是 MySQL索引使用的数据结构,对于索引优化和原理理解都非常重要,下面我的写文章就是要把B树,B+树的神秘面纱揭开,让大家在面试的时候碰到这个知识点一往无前,不再成为你的知识盲点! 1 ...
- easyui combobox两种不同的数据加载方式
1.通过http访问加载数据. $('#XXXId').combobox({ url: httpUrl, valueField: 'code', textField: 'name', });2.通过j ...
- “adb”不是内部或外部命令——解决方案
在AS(Android Studio简称AS)app真机测试中adb可以轻松找到安卓设备,ADB全称Android Debug Bridge,用于Android设备进行交互,也可以这样理解ADB是An ...
- Hibernate的工作流程