Description

有 \(Q\) 个询问。每次给定一个正整数 \(n\),求它的所有因数的质因数个数的和。


Solution

就讲中间的一个 Trick。

我们定义正整数 \(x\) 有 \(f(x)\) 个因数,且存在一函数 \(g(x) = \sum_{i | x} f^3(i)\),显然 \(g(x)\) 即 \(x\) 对应的答案。

那么,若 \(x = p^a\),则由因数个数定理可得: \(f(x) = a + 1\)。

且其因数集合可表示为:\(\{p^0, p^1, ... , p^a\}\)。故有 \(g(x) = \sum_{i = 0}^{a} f^3(p^i) = \sum_{i = 0}^{a} (i + 1)^3\)。

将 \(x\) 的范围加以推广。

若 \(x = p^a q^b\),则 \(f(x) = (a + 1) \times (b + 1)\)。

且其因数集合可表示为:\(\{\{p^0 q^0, p^0 q^1, ..., p^0 q^b\}, \{p^1 q^0, p^1 q^1, ..., p^1 q^b\}, ... , \{p^a q^0, p^a q^1, ..., p^a q^b\}\}\)。故有 \(g(x) = \sum_{i = 0}^{a}\sum_{j = 0}^{b} f^3(p^i q^j) = \sum_{i = 0}^{a}\sum_{j = 0}^{b} (i + 1)^3 (j + 1)^3\)。

注意到 \(g(p^a) = \sum_{i = 0}^{a} (i + 1)^3, g(q^b) = \sum_{j = 0}^{b} (j + 1)^3\)。

所以有 \(g(x) = g(p^a q^b) = g(p^a) \times g(q^b)\)。显然可推广至结论:

\[g(x) = g(p_1^{a_1} p_2^{a_2} ... p_k^{a_k}) = \prod_{i = 1}^{k} g(p_i^{a_i})
\]

然后就可以当结论题切掉它。


Code

#include <cstdio>

typedef long long LL;
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; }
int Abs(int x) { return x < 0 ? -x : x; } int read() {
int k = 1, x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
} void write(LL x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
} void print(LL x, char s) {
write(x);
putchar(s);
} const int MAXN = 5e6 + 5; bool flag[MAXN];
int num[MAXN], len = 0;
LL w[MAXN]; void Euler(int n) {
flag[1] = true;
for (int i = 2; i <= n; i++) {
if (!flag[i])
num[++len] = i;
for (int j = 1; j <= len; j++) {
if (i * num[j] > n)
break;
flag[i * num[j]] = true;
if (i % num[j] == 0)
break;
}
}
} int main() {
Euler(MAXN - 5);
for (int i = 1; i < 23; i++)
for (int j = 0; j <= i; j++) w[i] += (1 + j) * (1 + j) * (1 + j);
int n = read();
for (int i = 1, x; i <= n; i++) {
x = read();
LL res = 1;
for (int j = 1; num[j] * num[j] <= x; j++) {
int cnt = 0;
while (x % num[j] == 0) {
x /= num[j];
cnt++;
}
res *= w[cnt];
}
if (x > 1)
res *= w[1];
print(res, '\n');
}
return 0;
}

Solution -「HDU」Professor Ben的更多相关文章

  1. Solution -「构造」专练

    记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数 ...

  2. Solution -「原创」Destiny

    题目背景 题目背景与题目描述无关.签到愉快. 「冷」 他半靠在床沿,一缕感伤在透亮的眼眸间荡漾. 冷见惆怅而四散逃去.经历嘈杂喧嚣,感官早已麻木.冷又见空洞而乘隙而入.从里向外,这不是感官的范畴. 他 ...

  3. Solution -「HDU 6875」Yajilin

    \(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...

  4. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  5. Solution -「HDU 6643」Ridiculous Netizens

    \(\mathcal{Description}\)   Link.   给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...

  6. Solution -「HDU 1788」CRT again

    \(\mathcal{Description}\)   Link.   解同余方程组: \[x\equiv m_i-a\pmod{m_i} \]   其中 \(i=1,2,\dots,n\).   \ ...

  7. Solution -「HDU #6566」The Hanged Man

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...

  8. Solution -「LOCAL」「cov. HDU 6864」找朋友

    \(\mathcal{Description}\)   Link.(几乎一致)   给定 \(n\) 个点 \(m\) 条边的仙人掌和起点 \(s\),边长度均为 \(1\).令 \(d(u)\) 表 ...

  9. Solution -「LOCAL」「cov. HDU 6816」折纸游戏

    \(\mathcal{Description}\)   Link(削弱版).   \(n\) 张纸叠在一起对折 \(k\) 次,然后从上到下为每层的正反两面写上数字,求把纸重新摊平后每张纸上的数字序列 ...

随机推荐

  1. js动态生成vue组件

    代码奉上 install (Vue, options) { Vue.prototype.$message = function (message){ let Constructor = Vue.ext ...

  2. 在字节跳动,一个更好的企业级SparkSQL Server这么做

    SparkSQL是Spark生态系统中非常重要的组件.面向企业级服务时,SparkSQL存在易用性较差的问题,导致难满足日常的业务开发需求.本文将详细解读,如何通过构建SparkSQL服务器实现使用效 ...

  3. 创建进程,join方法,进程对象相关属性和方法,僵尸进程和孤儿进程,守护进程,互斥锁

    创建进程 在python中提供了一个multiprocessing模块可以帮助我们使用多进程解决问题.在multiprocessing 模块中有一个类Process. from multiproces ...

  4. Java高并发-多线程基础

    一.什么是线程 线程是进程内的执行单元. 二.线程的基本操作 2.1 状态与操作 2.2 新建线程 Thread t1 = new Thread(new CreateThread()); t1.sta ...

  5. Git移除远程已经上传的文件

    我们常常会将本地的一些秘钥文件不小心推送到远端,此时仅仅修改本地的.gitignore文件,然后再提交推送是不能将远端的此文件删除的. 此时可以用下面的命令 git rm --cached filen ...

  6. typora的下载和基本的使用

    目录 typora的下载和基本的使用 typora的下载 typora基本的使用 选择自己喜爱的主题 创建标题 进入编程环境 改变文本样式 插入链接 插入图片 有序列表 无序列表 创建表格 单选框 表 ...

  7. Linux版 MySql57安装教程

    这里介绍的是CentOS7.4安装mysql57的教程 创建MySQL文件包 使用mkdir -p 文件夹路径创建以下目录: 文件夹路径 用途 /usr/local/mysql MySQL安装路径 / ...

  8. C++primer第二章

    第二章 :变量和基本类型 2.1 基本内置类型 C++定义了一套包含算术类型(arithmetic type)和空类型(void)在内的基本数据类型 2.1.1 算术类型 算术类型的分类: 整型(in ...

  9. README.exe 是的,你看错是EXE

    SmartIDE让你的README变成可执行文档,再也不用编写无用的文档,再也不必操心环境问题.   作为开发者,拿到一个新的代码库的时候一般都会先去看README文件,通过这个文件可以知道这套代码所 ...

  10. BZOJ4713 迷失的字符串 解题报告

    BZOJ4713 题目大意:有 \(n\) 个点 \(n-1\) 条边,每条边有一个字符.给你 \(m\) 个字符串 \(s_i\),问每个字符串是否可以通过树上的一条简单路径表示. \(n,m\le ...