HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

本文是 Jure Leskovec 又一力作,首先对图神经网络的原理做了深入检出、提纲挈领的叙述,然后从原理方面介绍了如何发挥图神经网络的效用。

图神经网络可以分为三个阶段:

  1. Aggregate:聚合邻居节点信息

    \[a^{(k)}_v = AGGREGATE^{(k)}(\{h_{\mu}^{(k−1)}:\mu\in N(v)\})
    \]
  2. Combine:聚合邻居和当前节点

    \[h_{\mu}^{(k)} = COMBINE^{(k)}({h_{\mu}^{(k−1)},a^{(k)}_v})
    \]
  3. Readout:整合表示图中所有节点

    \[h_G = READOUT(\{h^{(K)}_v|v \in G\})
    \]

在GraphSAGE中,Aggregate和Combine过程如下,GCN同理

那么如何衡量图神经网络是否学到了良好的表示,这里提到了 Weisfeiler-Lehman test ,有兴趣可以下去研究。

文章的和核心出发点在于:对于子树结构相同且对应节点特征相同的的俩个节点,一个有效的GNN应该有能力映射两个节点到embedding空间中相同的位置,决不会将两个不同的节点映射到同一embedding空间位置。

Intuitively, a maximally powerful GNN maps two nodes to the same location only if they have identical subtree structures with identical features on the corresponding nodes

A maximally powerful GNN would never map two different neighborhoods

因此,GNN的Aggregate必须是单射的,单射函数(一对一函数)如下

由此引出定理3,定理3是本文中一个重要的定理,其规定了一个powerful GNN的理论形式,即函数 \(f\) 的变量是一个multiset,Combine \(\phi\) 是单射函数, Readout 是单射函数。

那么如何根据定理3设计改进GNN?

GIN:Graph Isomorphism Network

针对节点分类任务,使用nodel-level级GIN:

对于图分类任务,替换 \(h_G\) 如下

注意到式(4.1)做了两处改变,

  • 使用sum作为agg函数
  • 使用MLP替代 \(\sigma W\)

那么GIN是否有效?实验分别验证了 sum 和MLP 在此发挥的作用,分别用

(1) 1-layer perceptrons instead of MLPs and

(2) mean or max-pooling instead of the sum

根据引理7,单层perceptrons更接近于线性映射,使GNN退化为简单的summing。

作者用下面两个图阐述了sum>mean>max,此部分内容有兴趣可以阅读原文。

实验结果也验证了在大部分模型和任务上,GIN可以带来有效的提升。

原文:HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

官方GitHub:https://github.com/weihua916/powerful-gnns

《Graph Neural Networks多强大?》阅读笔记 - 陈乐天的文章 - 知乎 https://zhuanlan.zhihu.com/p/62006729

GraphSAGE: GCN落地必读论文 - 风浪的文章 - 知乎 https://zhuanlan.zhihu.com/p/62750137

GIN--HOW POWERFUL GNN的更多相关文章

  1. 论文解读(GIN)《How Powerful are Graph Neural Networks》

    Paper Information Title:<How Powerful are Graph Neural Networks?>Authors:Keyulu Xu, Weihua Hu, ...

  2. 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》

    论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...

  3. PGL图学习之图神经网络GraphSAGE、GIN图采样算法[系列七]

    0. PGL图学习之图神经网络GraphSAGE.GIN图采样算法[系列七] 本项目链接:https://aistudio.baidu.com/aistudio/projectdetail/50619 ...

  4. zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐

    [清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...

  5. 论文解读(soft-mask GNN)《Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks》

    论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Ya ...

  6. HDOJ 3593 The most powerful force

    树形DP / 泛化物品的背包...可以去看09年徐持衡论文<浅谈几类背包问题> The most powerful force Time Limit: 16000/8000 MS (Jav ...

  7. CodeForces 86D Powerful array(莫队+优化)

    D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input standard i ...

  8. hdu 4150 Powerful Incantation

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4150 Powerful Incantation Description Some dangerous ...

  9. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  10. 10+ powerful debugging tricks with Visual Studio

    10+ powerful debugging tricks with Visual Studio Original link : http://www.codeproject.com/Articles ...

随机推荐

  1. 关于python实现与体重秤蓝牙ble通信研究(Linux)

    前言 前几天买一个带蓝牙的体重秤,功能就是可以通过手机app连接,然后每一次称重都会记录下来,然后进行一些计算(体脂等),但是我不想用手机来操作,我习惯用电脑,就想写一个软件来与体重秤通信,记录我的每 ...

  2. Python 大数据量文本文件高效解析方案代码实现

    大数据量文本文件高效解析方案代码实现 测试环境 Python 3.6.2 Win 10 内存 8G,CPU I5 1.6 GHz 背景描述 这个作品来源于一个日志解析工具的开发,这个开发过程中遇到的一 ...

  3. 在windows上构建OpenCascade

    基于作者QuaoarsWorkshop的视频Open Cascade Lessons,讲的非常详细,观看需要魔法 什么是OCCT?. 首先,Open CASCADE Technology SDK 是一 ...

  4. [OpenCV实战]6 基于特征点匹配的视频稳像

    目录 1 介绍 1.1 视频稳定的方法 1.2 使用点特征匹配的视频稳定 2 算法 2.1 帧间运动信息获取 2.1.1 合适的特征点获取 2.1.2 Lucas-Kanade光流法 2.1.3 运动 ...

  5. CSP-S2022 游记

    Day 998244350 模拟赛场场被学弟吊打.最后几天写了一堆随机化乱搞题以及奇怪的搜索,都是 CSP 不曾考的玩意(书接下文). 点分治已经敲烂了.最后两场每场一个. Day 499122175 ...

  6. Hadoop详解(03)-Hadoop编译源码-了解

    Hadoop详解(03)-Hadoop编译源码-了解 准备工作 CentOS联网 配置CentOS能连接外网.Linux虚拟机ping www.baidu.com 是畅通的 jar包准备(hadoop ...

  7. H5直播技术起航

    作者:京东科技 吴磊 音视频基本概念 视频格式就是通常所说的.mp4,.flv,.ogv,.webm等.简单来说,它其实就是一个盒子,用来将实际的视频流以一定的顺序放入,确保播放的有序和完整性. 视频 ...

  8. [Leetcode]扁平化多级双向链表

    题目   https://leetcode-cn.com/explore/learn/card/linked-list/197/conclusion/764/ 代码 /* // Definition ...

  9. Postman实现UI自动化测试

    转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/1db4fa44.html 你好,我是测试蔡坨坨. 看到这篇文章的标题,是不是有小伙伴会感到惊讶呢? Postman不是做接口 ...

  10. webpack 中 loader 和 plugin 的区别

    通俗点讲loader是转换,plugin是执行比转换更复杂的任务,比如合并压缩等 loader:让webpack能够处理非js文件,然后你就可以利用 webpack 的打包能力,对它们进行处理. 例如 ...