简要题意

给你一个长度为 \(n\) 的正整数序列 \(a\),有 \(m\) 个询问,每一个询问给出一个区间 \([l,r]\)。定义函数 \(f(x)=\lfloor\log_{2}(x)+1\rfloor\)。将 \([l,r]\) 的所有元素 \(a_p\) 修改为 \(f(a_p)\)。然后输出序列 \(a\) 的全局和。

对于 \(100\%\) 的数据,\(1 \leq n,m \le 10^5,1 \leq a_i \leq 10^9\)。

思路

前置知识:线段树。

这一道题是无标记区间修改线段树(我自己取得名字)的模板题。

这道题如果使用普通的线段树区间修改(打标记法),无论是标记下传还是标记永久化,都有一个问题:如何实现区间更新?也就是说知道 \(\sum_{i=l}^{r}{a_i}\),如何求 \(\sum_{i=l}^{r}{f(a_i)}\)?

这不是不好求,是不能求。

那我们考虑回归暴力。暴力思路很简单,在线段树上找到 \([l,r]\) 的所有元素,一一单点更新即可。

接下来见证奇迹的时刻:首先,易证当 \(x=1\) 或 \(x=2\) 时,\(f(x)=x\)。

那我们只需要再维护一个区间最大值,如果线段树遍历到的区间最大值 \(\leq 2\),那么直接不用更新了,返回。

这样子似乎复杂度没变?不不不,复杂度已经变成了 \(O(\alpha(a_i)n)\)!

这里给出简单证明过程:首先,\(f(i)\approx \log_{2}(i)\),也就是说,单次 \(f(i)\) 时缩减到了 \(\log(i)\) 级。

所以如果令 \(x\) 递归 \(k(x)\) 到 \(1\)。我们发现 \(k(x)\) 不太好求,于是我们反过来知道 \(x\) 求 \(k(x)\):

\[\underbrace{2^{2^{2^\cdots}}}_{k(x)}=x
\]

下面我们把上式简写为 \(2@k(x)=x\)。

自然想到阿克曼函数 \(A(2,k(x))=2@k(x)=x\)。然后 \(k(x)\) 就是和 \(\alpha(x)\) 同阶了。

均摊时间复杂度分析:由于每一个元素最多被单点修改 \(\alpha(10^9)\approx 3\) 次。所以均摊时间复杂度是 \(O(3n)\)。

这就是无标记区间修改线段树。课后习题还有几道无标记区间修改线段树的题,供大家练习。

课后习题:

代码

#include <bits/stdc++.h>
#define int long long
#define ls (i<<1)
#define rs (i<<1|1)
#define mid ((l+r)>>1)
using namespace std; int n,m;
const int N = 1e5+5;
struct node{
int maxt,sumt;
} t[N<<2]; inline void pushup(int i){
t[i].maxt=max(t[ls].maxt,t[rs].maxt);
t[i].sumt=t[ls].sumt+t[rs].sumt;
} void build(int i,int l,int r){
if(l==r){
cin>>t[i].maxt;
t[i].sumt=t[i].maxt;
return;
}
build(ls,l,mid);
build(rs,mid+1,r);
pushup(i);
} inline int magic(int x){
return floor(log(x)/log(2)+1);
} void update(int ql,int qr,int i,int l,int r){
if(t[i].maxt<=2){
return;
}
if(l==r){
t[i].sumt=t[i].maxt=magic(t[i].sumt);
return;
}
if(ql<=mid){
update(ql,qr,ls,l,mid);
}
if(qr>mid){
update(ql,qr,rs,mid+1,r);
}
pushup(i);
} int query(int ql,int qr,int i,int l,int r){
if(ql<=l&&r<=qr){
return t[i].sumt;
}
int ret=0;
if(ql<=mid){
ret += query(ql,qr,ls,l,mid);
}
if(qr>mid){
ret += query(ql,qr,rs,mid+1,r);
}
return ret;
} signed main(){
cin>>n>>m;
build(1,1,n);
while(m--){
int l,r;
cin>>l>>r;
update(l,r,1,1,n);
cout<<query(1,n,1,1,n)<<'\n';
}
return 0;
}

(听说有人抄我的交题解,我劝你善良)

P8618 [蓝桥杯 2014 国 B] Log 大侠的更多相关文章

  1. 2014年第五届蓝桥杯国赛 Log大侠(区间合并+Java递归效率分析)

    1678: Log大侠 java 时间限制: 2 Sec  内存限制: 256 MB提交: 20  解决: 1 题目描述     atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称L ...

  2. 蓝桥杯 2014本科C++ B组 奇怪的分式 暴力枚举

    蓝桥杯 枚举 奇怪的分式 标题:奇怪的分式 上小学的时候,小明经常自己发明新算法.一次,老师出的题目是: 1/4 乘以 8/5 小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1 ...

  3. [蓝桥杯]2014蓝桥省赛B组题目及详解

    /*——————————————————————————————————————————————————————————— [结果填空题]T1 题目:啤酒和饮料 啤酒每罐2.3元,饮料每罐1.9元.小 ...

  4. 蓝桥杯 2014本科C++ B组 李白打酒 三种实现方法 枚举/递归

    标题:李白打酒 话说大诗人李白,一生好饮.幸好他从不开车. 一天,他提着酒壶,从家里出来,酒壶中有酒2斗.他边走边唱: 无事街上走,提壶去打酒. 逢店加一倍,遇花喝一斗. 这一路上,他一共遇到店5次, ...

  5. 蓝桥杯 2014本科C++ B组 六角填数 枚举排列

    标题:六角填数 如图[1.png]所示六角形中,填入1~12的数字. 使得每条直线上的数字之和都相同. 图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少? 请通过浏览器提交答案,不要填 ...

  6. 蓝桥杯 2014本科C++ B组 地宫取宝 DFS+记忆化搜索

    历届试题 地宫取宝   时间限制:1.0s   内存限制:256.0MB 问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角 ...

  7. 平方十位数(蓝桥杯第八届国赛真题 JAVA-B组)

    思路:从大到小枚举,判断其平方是否不重复 答案:9814072356 //水题 标题:平方十位数 由0~9这10个数字不重复.不遗漏,可以组成很多10位数字. 这其中也有很多恰好是平方数(是某个数的平 ...

  8. 【蓝桥杯真题】地宫取宝(搜索->记忆化搜索详解)

    链接 [蓝桥杯][2014年第五届真题]地宫取宝 题目描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被 ...

  9. 蓝桥杯Log大侠(线段树单点区间更新)

    标题:Log大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: ...

  10. java实现第五届蓝桥杯LOG大侠

    LOG大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力- 变换的规则是: 对其某个 ...

随机推荐

  1. golang中的几种并发模式

    0.1.索引 https://blog.waterflow.link/articles/1663551951058 1.for- select模式 这种模式通常用在从多个通道读取数据 package ...

  2. 18.-cookies和session

    一.会话定义 从打开浏览器访问一个网站,到关闭浏览器结束此次访问,称之为一次绘画 HTTP协议是无状态的,导致绘画状态难以保持 Cookies和session就是为了保持会话状态而诞生的两个存储技术 ...

  3. .Net Core&RabbitMQ限制循环消费

    前言 当消费者端接收消息处理业务时,如果出现异常或是拒收消息将消息又变更为等待投递再次推送给消费者,这样一来,则形成循环的条件. 循环场景 生产者发送100条消息到RabbitMQ中,消费者设定读取到 ...

  4. DelCrLfSpace V0.9

    开发界面 Option Explicit 'SourceTextBox 是上面的源框 'ResultTextBox 是下面的处理预览框 'Form KeyPreview = True Private ...

  5. Django的简单使用

    Django 基础简介 基础简介 1. 软件框架 一个公司是由公司中的各部部门来组成的,每一个部门拥有特定的职能,部门与部门之间通过相互的配合来完成让公司运转起来. 一个软件框架是由其中各个软件模块组 ...

  6. Java自定义排序

    实现Comparator接口 实现该接口需要重写compare()方法 Arrays.sort(students, new Comparator<Student>() { @Overrid ...

  7. RabbitMQ 常见问题

    RabbitMQ 常见问题 昔我往矣,杨柳依依.今我来思,雨雪霏霏. 1.什么是RabbitMQ?  RabbitMQ是一款开源的.Erlang编写的消息中间件:最大的特点就是消费并不需要确保提供方存 ...

  8. SpringCLoud_Aibaba

    微服务项目核心组件 https://gitee.com/gtnotgod/spring-cloud_-alibaba_-study001.git 注册中心:nacos API网关:gateway 生产 ...

  9. Linux面试题2:网络IO模型 & IO多路复用

    网络IO 先确定一下范围,我们讨论的都是网络IO,现阶段计算机早已经从CPU密集型转换成网络IO密集型,所以网络io的类型对于服务响应而言更重要. 五种IO模型 依据Unix的IO分类,网络IO分为五 ...

  10. qtCreator警告解决

    警告 qtCreator Warning: QT_DEVICE_PIXEL_RATIO is deprecated. Instead use: QT_AUTO_SCREEN_SCALE_FACTOR ...