基于SpERT的中文关系抽取
SpERT_chinese
基于论文SpERT: "Span-based Entity and Relation Transformer"的中文关系抽取,同时抽取实体、实体类别和关系类别。
原始论文地址: https://arxiv.org/abs/1909.07755 (published at ECAI 2020)
原始论文代码:https://github.com/lavis-nlp/spert

设置
Requirements
- Required
- Python 3.5+
- PyTorch (tested with version 1.4.0)
- transformers (+sentencepiece, e.g. with 'pip install transformers[sentencepiece]', tested with version 4.1.1)
- scikit-learn (tested with version 0.24.0)
- tqdm (tested with version 4.55.1)
- numpy (tested with version 1.17.4)
- Optional
- jinja2 (tested with version 2.10.3) - if installed, used to export relation extraction examples
- tensorboardX (tested with version 1.6) - if installed, used to save training process to tensorboard
- spacy (tested with version 3.0.1) - if installed, used to tokenize sentences for prediction
pip install transformers ==4.1.1
pip install tensorboardX
pip install tqdm
pip install jinja2
pip install spacy==3.3.1
额外的,下载:https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.3.0/zh_core_web_sm-3.3.0.tar.gz 。执行:pip install zh_core_web_sm-3.3.0.tar.gz
还需要在huggingface上下载chinese-bert-wwm-ext到model_hub/chinese-bert-wwm-ext/下。
获取数据
这里使用的数据是千言数据中的信息抽取数据,可以去这里下载:千言(LUGE)| 全面的中文开源数据集合 。下载并解压获得duie_train.json、duie_dev.json、duie_schema.json,将它们放置在data/duie/下,然后运行那下面的process.py以获得:
train.json # 训练集
dev.json # 验证集,如果有测试集,也可以生成test.json
duie_prediction_example.json # 预测样本
duie_types.json # 存储的实体类型和关系类型
entity_types.txt # 实际上用不上,只是我们自己看看
relation_types.txt # 实际上用不上,只是我们自己看看
train.json和dev.json里面的数据格式如下所示:
[
{"tokens": ["这", "件", "婚", "事", "原", "本", "与", "陈", "国", "峻", "无", "关", ",", "但", "陈", "国", "峻", "却", "“", "欲", "求", "配", "而", "无", "由", ",", "夜", "间", "乃", "潜", "入", "天", "城", "公", "主", "所", "居", "通", "之"], "entities": [{"type": "人物", "start": 8, "end": 10}, {"type": "人物", "start": 31, "end": 35}], "relations": [{"type": "丈夫", "tail": 0, "head": 1}, {"type": "妻子", "head": 0, "tail": 1}]},
......
]
需要说明的是relations里面的head和tail对应的是entities里面实体的列表里的索引。
duie_types.json格式如下所示:
{"entities": {"行政区": {"short": "行政区", "verbose": "行政区"}, "人物": {"short": "人物", "verbose": "人物"}, "气候": {"short": "气候", "verbose": "气候"}, "文学作品": {"short": "文学作品", "verbose": "文学作品"}, "Text": {"short": "Text", "verbose": "Text"}, "学科专业": {"short": "学科专业", "verbose": "学科专业"}, "作品": {"short": "作品", "verbose": "作品"}, "奖项": {"short": "奖项", "verbose": "奖项"}, "国家": {"short": "国家", "verbose": "国家"}, "电视综艺": {"short": "电视综艺", "verbose": "电视综艺"}, "影视作品": {"short": "影视作品", "verbose": "影视作品"}, "企业": {"short": "企业", "verbose": "企业"}, "语言": {"short": "语言", "verbose": "语言"}, "歌曲": {"short": "歌曲", "verbose": "歌曲"}, "Date": {"short": "Date", "verbose": "Date"}, "企业/品牌": {"short": "企业/品牌", "verbose": "企业/品牌"}, "地点": {"short": "地点", "verbose": "地点"}, "Number": {"short": "Number", "verbose": "Number"}, "图书作品": {"short": "图书作品", "verbose": "图书作品"}, "景点": {"short": "景点", "verbose": "景点"}, "城市": {"short": "城市", "verbose": "城市"}, "学校": {"short": "学校", "verbose": "学校"}, "音乐专辑": {"short": "音乐专辑", "verbose": "音乐专辑"}, "机构": {"short": "机构", "verbose": "机构"}},
"relations": {"编剧": {"short": "编剧", "verbose": "编剧", "symmetric": false}, "修业年限": {"short": "修业年限", "verbose": "修业年限", "symmetric": false}, "毕业院校": {"short": "毕业院校", "verbose": "毕业院校", "symmetric": false}, "气候": {"short": "气候", "verbose": "气候", "symmetric": false}, "配音": {"short": "配音", "verbose": "配音", "symmetric": false}, "注册资本": {"short": "注册资本", "verbose": "注册资本", "symmetric": false}, "成立日期": {"short": "成立日期", "verbose": "成立日期", "symmetric": false}, "父亲": {"short": "父亲", "verbose": "父亲", "symmetric": false}, "面积": {"short": "面积", "verbose": "面积", "symmetric": false}, "专业代码": {"short": "专业代码", "verbose": "专业代码", "symmetric": false}, "作者": {"short": "作者", "verbose": "作者", "symmetric": false}, "首都": {"short": "首都", "verbose": "首都", "symmetric": false}, "丈夫": {"short": "丈夫", "verbose": "丈夫", "symmetric": false}, "嘉宾": {"short": "嘉宾", "verbose": "嘉宾", "symmetric": false}, "官方语言": {"short": "官方语言", "verbose": "官方语言", "symmetric": false}, "作曲": {"short": "作曲", "verbose": "作曲", "symmetric": false}, "号": {"short": "号", "verbose": "号", "symmetric": false}, "票房": {"short": "票房", "verbose": "票房", "symmetric": false}, "简称": {"short": "简称", "verbose": "简称", "symmetric": false}, "母亲": {"short": "母亲", "verbose": "母亲", "symmetric": false}, "制片人": {"short": "制片人", "verbose": "制片人", "symmetric": false}, "导演": {"short": "导演", "verbose": "导演", "symmetric": false}, "歌手": {"short": "歌手", "verbose": "歌手", "symmetric": false}, "改编自": {"short": "改编自", "verbose": "改编自", "symmetric": false}, "海拔": {"short": "海拔", "verbose": "海拔", "symmetric": false}, "占地面积": {"short": "占地面积", "verbose": "占地面积", "symmetric": false}, "出品公司": {"short": "出品公司", "verbose": "出品公司", "symmetric": false}, "上映时间": {"short": "上映时间", "verbose": "上映时间", "symmetric": false}, "所在城市": {"short": "所在城市", "verbose": "所在城市", "symmetric": false}, "主持人": {"short": "主持人", "verbose": "主持人", "symmetric": false}, "作词": {"short": "作词", "verbose": "作词", "symmetric": false}, "人口数量": {"short": "人口数量", "verbose": "人口数量", "symmetric": false}, "祖籍": {"short": "祖籍", "verbose": "祖籍", "symmetric": false}, "校长": {"short": "校长", "verbose": "校长", "symmetric": false}, "朝代": {"short": "朝代", "verbose": "朝代", "symmetric": false}, "主题曲": {"short": "主题曲", "verbose": "主题曲", "symmetric": false}, "获奖": {"short": "获奖", "verbose": "获奖", "symmetric": false}, "代言人": {"short": "代言人", "verbose": "代言人", "symmetric": false}, "主演": {"short": "主演", "verbose": "主演", "symmetric": false}, "所属专辑": {"short": "所属专辑", "verbose": "所属专辑", "symmetric": false}, "饰演": {"short": "饰演", "verbose": "饰演", "symmetric": false}, "董事长": {"short": "董事长", "verbose": "董事长", "symmetric": false}, "主角": {"short": "主角", "verbose": "主角", "symmetric": false}, "妻子": {"short": "妻子", "verbose": "妻子", "symmetric": false}, "总部地点": {"short": "总部地点", "verbose": "总部地点", "symmetric": false}, "国籍": {"short": "国籍", "verbose": "国籍", "symmetric": false}, "创始人": {"short": "创始人", "verbose": "创始人", "symmetric": false}, "邮政编码": {"short": "邮政编码", "verbose": "邮政编码", "symmetric": false}}}
例子
(1) 在duie上使用训练集进行训练, 在验证集上进行评估。需要注意的是,这里我只使用了训练集的10000条数据和验证集的10000条数据训练了1个epoch。
python ./spert.py train --config configs/duie_train.conf
--------------------------------------------------
Config:
{'label': 'duie_train', 'model_type': 'spert', 'model_path': 'model_hub/chinese-bert-wwm-ext', 'tokenizer_path': 'model_hub/chinese-bert-wwm-ext', 'train_path': 'data/duie/train.json', 'valid_path': 'data/duie/dev.json', 'types_path': 'data/duie/duie_types.json', 'train_batch_size': '2', 'eval_batch_size': '1', 'neg_entity_count': '100', 'neg_relation_count': '100', 'epochs': '1', 'lr': '5e-5', 'lr_warmup': '0.1', 'weight_decay': '0.01', 'max_grad_norm': '1.0', 'rel_filter_threshold': '0.4', 'size_embedding': '25', 'prop_drop': '0.1', 'max_span_size': '20', 'store_predictions': 'true', 'store_examples': 'true', 'sampling_processes': '2', 'max_pairs': '1000', 'final_eval': 'true', 'log_path': 'data/log/', 'save_path': 'data/save/'}
Repeat 1 times
--------------------------------------------------
Iteration 0
--------------------------------------------------
2022-11-17 06:48:16,488 [MainThread ] [INFO ] Datasets: data/duie/train.json, data/duie/dev.json
2022-11-17 06:48:16,489 [MainThread ] [INFO ] Model type: spert
Parse dataset 'train': 100% 10000/10000 [00:52<00:00, 189.61it/s]
<spert.entities.Dataset object at 0x7f24c8c19550>
Parse dataset 'valid': 100% 10000/10000 [00:52<00:00, 191.25it/s]
<spert.entities.Dataset object at 0x7f24c8c19250>
2022-11-17 06:50:02,108 [MainThread ] [INFO ] Relation type count: 49
2022-11-17 06:50:02,108 [MainThread ] [INFO ] Entity type count: 25
2022-11-17 06:50:02,108 [MainThread ] [INFO ] Entities:
2022-11-17 06:50:02,108 [MainThread ] [INFO ] No Entity=0
2022-11-17 06:50:02,108 [MainThread ] [INFO ] 行政区=1
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 人物=2
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 气候=3
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 文学作品=4
2022-11-17 06:50:02,109 [MainThread ] [INFO ] Text=5
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 学科专业=6
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 作品=7
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 奖项=8
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 国家=9
2022-11-17 06:50:02,109 [MainThread ] [INFO ] 电视综艺=10
2022-11-17 06:50:02,110 [MainThread ] [INFO ] 影视作品=11
2022-11-17 06:50:02,110 [MainThread ] [INFO ] 企业=12
2022-11-17 06:50:02,110 [MainThread ] [INFO ] 语言=13
2022-11-17 06:50:02,110 [MainThread ] [INFO ] 歌曲=14
2022-11-17 06:50:02,110 [MainThread ] [INFO ] Date=15
2022-11-17 06:50:02,110 [MainThread ] [INFO ] 企业/品牌=16
2022-11-17 06:50:02,110 [MainThread ] [INFO ] 地点=17
2022-11-17 06:50:02,110 [MainThread ] [INFO ] Number=18
2022-11-17 06:50:02,111 [MainThread ] [INFO ] 图书作品=19
2022-11-17 06:50:02,111 [MainThread ] [INFO ] 景点=20
2022-11-17 06:50:02,111 [MainThread ] [INFO ] 城市=21
2022-11-17 06:50:02,111 [MainThread ] [INFO ] 学校=22
2022-11-17 06:50:02,111 [MainThread ] [INFO ] 音乐专辑=23
2022-11-17 06:50:02,111 [MainThread ] [INFO ] 机构=24
2022-11-17 06:50:02,111 [MainThread ] [INFO ] Relations:
2022-11-17 06:50:02,111 [MainThread ] [INFO ] No Relation=0
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 编剧=1
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 修业年限=2
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 毕业院校=3
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 气候=4
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 配音=5
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 注册资本=6
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 成立日期=7
2022-11-17 06:50:02,112 [MainThread ] [INFO ] 父亲=8
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 面积=9
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 专业代码=10
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 作者=11
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 首都=12
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 丈夫=13
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 嘉宾=14
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 官方语言=15
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 作曲=16
2022-11-17 06:50:02,113 [MainThread ] [INFO ] 号=17
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 票房=18
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 简称=19
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 母亲=20
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 制片人=21
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 导演=22
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 歌手=23
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 改编自=24
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 海拔=25
2022-11-17 06:50:02,114 [MainThread ] [INFO ] 占地面积=26
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 出品公司=27
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 上映时间=28
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 所在城市=29
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 主持人=30
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 作词=31
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 人口数量=32
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 祖籍=33
2022-11-17 06:50:02,115 [MainThread ] [INFO ] 校长=34
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 朝代=35
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 主题曲=36
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 获奖=37
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 代言人=38
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 主演=39
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 所属专辑=40
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 饰演=41
2022-11-17 06:50:02,116 [MainThread ] [INFO ] 董事长=42
2022-11-17 06:50:02,117 [MainThread ] [INFO ] 主角=43
2022-11-17 06:50:02,117 [MainThread ] [INFO ] 妻子=44
2022-11-17 06:50:02,117 [MainThread ] [INFO ] 总部地点=45
2022-11-17 06:50:02,117 [MainThread ] [INFO ] 国籍=46
2022-11-17 06:50:02,117 [MainThread ] [INFO ] 创始人=47
2022-11-17 06:50:02,117 [MainThread ] [INFO ] 邮政编码=48
2022-11-17 06:50:02,117 [MainThread ] [INFO ] Dataset: train
2022-11-17 06:50:02,117 [MainThread ] [INFO ] Document count: 10000
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Relation count: 18119
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Entity count: 28033
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Dataset: valid
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Document count: 10000
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Relation count: 18223
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Entity count: 28071
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Updates per epoch: 5000
2022-11-17 06:50:02,118 [MainThread ] [INFO ] Updates total: 5000
Some weights of the model checkpoint at model_hub/chinese-bert-wwm-ext were not used when initializing SpERT: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']
- This IS expected if you are initializing SpERT from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing SpERT from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of SpERT were not initialized from the model checkpoint at model_hub/chinese-bert-wwm-ext and are newly initialized: ['rel_classifier.weight', 'rel_classifier.bias', 'entity_classifier.weight', 'entity_classifier.bias', 'size_embeddings.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
2022-11-17 06:50:07,261 [MainThread ] [INFO ] Train epoch: 0
Train epoch 0: 100% 5000/5000 [09:01<00:00, 9.24it/s]
2022-11-17 06:59:08,476 [MainThread ] [INFO ] Evaluate: valid
Evaluate epoch 1: 0% 0/10000 [00:00<?, ?it/s]/content/drive/MyDrive/spert/spert/prediction.py:84: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
valid_rel_indices = rel_nonzero // rel_class_count
Evaluate epoch 1: 100% 10000/10000 [06:36<00:00, 25.20it/s]
Evaluation
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly
type precision recall f1-score support
语言 0.00 0.00 0.00 9
行政区 41.29 87.37 56.08 95
电视综艺 43.94 81.69 57.14 355
奖项 20.90 74.87 32.68 199
Text 42.69 78.23 55.23 634
学校 47.59 93.20 63.01 647
气候 69.64 79.59 74.29 49
Number 29.01 96.58 44.62 292
歌曲 54.55 87.14 67.10 1617
地点 26.25 57.58 36.06 264
影视作品 57.05 92.34 70.53 2704
城市 62.79 46.55 53.47 58
人物 60.93 95.98 74.54 14283
音乐专辑 54.75 79.34 64.79 334
文学作品 35.14 13.27 19.26 98
Date 47.23 97.15 63.56 1193
企业/品牌 26.88 46.30 34.01 54
作品 0.00 0.00 0.00 22
企业 35.62 73.86 48.07 1144
图书作品 64.91 87.12 74.39 1724
机构 39.45 79.37 52.70 1076
学科专业 0.00 0.00 0.00 2
景点 25.00 3.23 5.71 31
国家 29.92 93.28 45.31 640
micro 53.15 90.82 67.06 27524
macro 38.15 64.33 45.52 27524
--- Relations ---
Without named entity classification (NEC)
A relation is considered correct if the relation type and the spans of the two related entities are predicted correctly (entity type is not considered)
type precision recall f1-score support
成立日期 19.31 88.94 31.74 868
注册资本 9.57 87.50 17.25 56
主角 15.45 15.18 15.32 112
饰演 40.00 9.74 15.67 308
祖籍 20.98 73.17 32.61 82
作曲 22.67 59.92 32.90 484
编剧 47.27 7.22 12.53 360
修业年限 0.00 0.00 0.00 1
妻子 24.99 57.30 34.80 747
改编自 0.00 0.00 0.00 34
占地面积 20.69 29.27 24.24 41
主演 33.06 90.21 48.39 2574
气候 39.33 70.00 50.36 50
父亲 15.13 67.36 24.71 916
朝代 11.67 75.84 20.23 356
歌手 23.50 81.08 36.44 1221
导演 32.93 84.82 47.44 1179
面积 7.14 73.53 13.02 34
所在城市 3.12 3.23 3.17 31
海拔 57.14 66.67 61.54 24
票房 4.13 94.83 7.91 116
主持人 27.25 73.46 39.75 260
代言人 10.97 45.61 17.69 57
嘉宾 19.13 51.17 27.84 342
专业代码 0.00 0.00 0.00 1
创始人 19.10 46.22 27.03 119
所属专辑 33.30 81.21 47.23 431
人口数量 16.07 40.91 23.08 22
制片人 0.00 0.00 0.00 97
作者 35.77 83.67 50.11 1837
董事长 14.06 84.77 24.12 440
配音 8.77 46.35 14.74 233
作词 32.24 67.88 43.72 520
上映时间 12.87 92.70 22.60 356
毕业院校 31.41 91.05 46.71 503
获奖 3.66 71.14 6.96 201
官方语言 0.00 0.00 0.00 9
丈夫 24.59 55.96 34.16 747
邮政编码 0.00 0.00 0.00 1
首都 80.00 14.81 25.00 27
主题曲 19.35 64.17 29.74 187
号 34.08 79.17 47.65 96
母亲 14.44 36.99 20.77 519
简称 13.24 65.40 22.02 237
校长 16.77 93.92 28.45 148
总部地点 5.51 49.38 9.92 160
出品公司 18.49 77.78 29.87 405
国籍 11.03 87.44 19.59 661
micro 19.89 72.78 31.25 18210
macro 19.80 54.94 24.77 18210
With named entity classification (NEC)
A relation is considered correct if the relation type and the two related entities are predicted correctly (in span and entity type)
type precision recall f1-score support
成立日期 17.54 80.76 28.82 868
注册资本 8.20 75.00 14.79 56
主角 6.36 6.25 6.31 112
饰演 40.00 9.74 15.67 308
祖籍 20.98 73.17 32.61 82
作曲 22.67 59.92 32.90 484
编剧 47.27 7.22 12.53 360
修业年限 0.00 0.00 0.00 1
妻子 24.99 57.30 34.80 747
改编自 0.00 0.00 0.00 34
占地面积 20.69 29.27 24.24 41
主演 33.04 90.17 48.36 2574
气候 39.33 70.00 50.36 50
父亲 15.13 67.36 24.71 916
朝代 11.50 74.72 19.93 356
歌手 22.51 77.64 34.90 1221
导演 32.86 84.65 47.34 1179
面积 7.14 73.53 13.02 34
所在城市 0.00 0.00 0.00 31
海拔 14.29 16.67 15.38 24
票房 4.13 94.83 7.91 116
主持人 27.10 73.08 39.54 260
代言人 9.70 40.35 15.65 57
嘉宾 19.02 50.88 27.68 342
专业代码 0.00 0.00 0.00 1
创始人 10.42 25.21 14.74 119
所属专辑 26.93 65.66 38.19 431
人口数量 16.07 40.91 23.08 22
制片人 0.00 0.00 0.00 97
作者 35.19 82.31 49.30 1837
董事长 14.02 84.55 24.05 440
配音 8.77 46.35 14.74 233
作词 32.24 67.88 43.72 520
上映时间 12.16 87.64 21.36 356
毕业院校 31.41 91.05 46.71 503
获奖 3.64 70.65 6.92 201
官方语言 0.00 0.00 0.00 9
丈夫 24.59 55.96 34.16 747
邮政编码 0.00 0.00 0.00 1
首都 80.00 14.81 25.00 27
主题曲 19.19 63.64 29.49 187
号 34.08 79.17 47.65 96
母亲 14.44 36.99 20.77 519
简称 11.36 56.12 18.89 237
校长 16.77 93.92 28.45 148
总部地点 3.07 27.50 5.52 160
出品公司 18.31 77.04 29.59 405
国籍 10.97 86.99 19.49 661
micro 19.36 70.83 30.41 18210
macro 18.08 51.39 22.69 18210
2022-11-17 07:08:01,224 [MainThread ] [INFO ] Logged in: data/log/duie_train/2022-11-17_06:48:16.414088
2022-11-17 07:08:01,224 [MainThread ] [INFO ] Saved in: data/save/duie_train/2022-11-17_06:48:16.414088
(2) 在测试集上进行评估,由于我们没有测试集,里面参数设置为验证集地址。我们要修改duie_eval.conf里面保存好的模型的地址,一般的,在data/save/duie_train/日期文件夹/final_model下。如果测试集和验证集一样,那么就是和上述一样的结果。
python ./spert.py eval --config configs/duie_eval.conf
(3) 我们要修改duie_eval.conf里面保存好的模型的地址,一般的,在data/save/duie_train/日期文件夹/final_model下。进行预测使用的是duie_prediction_example.json,里面的格式是:
[{"tokens": ["《", "废", "物", "小", "说", "》", "是", "新", "片", "场", "出", "品", ",", "杜", "煜", "峰", "(", "东", "北", "花", "泽", "类", ")", "导", "演", "2", "的", "动", "画", "首", "作", ",", "作", "品", "延", "续", "了", "他", "一", "贯", "的", "脱", "力", "系", "搞", "笑", "风", "格"], "entities": [{"type": "影视作品", "start": 1, "end": 5}, {"type": "企业", "start": 7, "end": 10}, {"type": "人物", "start": 13, "end": 16}], "relations": [{"type": "出品公司", "head": 0, "tail": 1}, {"type": "导演", "head": 0, "tail": 2}]}, {"tokens": ["《", "废", "物", "小", "说", "》", "是", "新", "片", "场", "出", "品", ",", "杜", "煜", "峰", "(", "东", "北", "花", "泽", "类", ")", "导", "演", "2", "的", "动", "画", "首", "作", ",", "作", "品", "延", "续", "了", "他", "一", "贯", "的", "脱", "力", "系", "搞", "笑", "风", "格"], "entities": [{"type": "影视作品", "start": 1, "end": 5}, {"type": "企业", "start": 7, "end": 10}, {"type": "人物", "start": 13, "end": 16}], "relations": [{"type": "出品公司", "head": 0, "tail": 1}, {"type": "导演", "head": 0, "tail": 2}]}, {"tokens": ["《", "废", "物", "小", "说", "》", "是", "新", "片", "场", "出", "品", ",", "杜", "煜", "峰", "(", "东", "北", "花", "泽", "类", ")", "导", "演", "2", "的", "动", "画", "首", "作", ",", "作", "品", "延", "续", "了", "他", "一", "贯", "的", "脱", "力", "系", "搞", "笑", "风", "格"], "entities": [{"type": "影视作品", "start": 1, "end": 5}, {"type": "企业", "start": 7, "end": 10}, {"type": "人物", "start": 13, "end": 16}], "relations": [{"type": "出品公司", "head": 0, "tail": 1}, {"type": "导演", "head": 0, "tail": 2}]}]
python ./spert.py predict --config configs/example_predict.conf
[{"tokens": ["《", "废", "物", "小", "说", "》", "是", "新", "片", "场", "出", "品", ",", "杜", "煜", "峰", "(", "东", "北", "花", "泽", "类", ")", "导", "演", "2", "的", "动", "画", "首", "作", ",", "作", "品", "延", "续", "了", "他", "一", "贯", "的", "脱", "力", "系", "搞", "笑", "风", "格"], "entities": [{"type": "影视作品", "start": 1, "end": 5}, {"type": "企业", "start": 7, "end": 10}, {"type": "人物", "start": 13, "end": 16}], "relations": [{"type": "出品公司", "head": 0, "tail": 1}, {"type": "导演", "head": 0, "tail": 2}]}, {"tokens": ["《", "废", "物", "小", "说", "》", "是", "新", "片", "场", "出", "品", ",", "杜", "煜", "峰", "(", "东", "北", "花", "泽", "类", ")", "导", "演", "2", "的", "动", "画", "首", "作", ",", "作", "品", "延", "续", "了", "他", "一", "贯", "的", "脱", "力", "系", "搞", "笑", "风", "格"], "entities": [{"type": "影视作品", "start": 1, "end": 5}, {"type": "企业", "start": 7, "end": 10}, {"type": "人物", "start": 13, "end": 16}], "relations": [{"type": "出品公司", "head": 0, "tail": 1}, {"type": "导演", "head": 0, "tail": 2}]}, {"tokens": ["《", "废", "物", "小", "说", "》", "是", "新", "片", "场", "出", "品", ",", "杜", "煜", "峰", "(", "东", "北", "花", "泽", "类", ")", "导", "演", "2", "的", "动", "画", "首", "作", ",", "作", "品", "延", "续", "了", "他", "一", "贯", "的", "脱", "力", "系", "搞", "笑", "风", "格"], "entities": [{"type": "影视作品", "start": 1, "end": 5}, {"type": "企业", "start": 7, "end": 10}, {"type": "人物", "start": 13, "end": 16}], "relations": [{"type": "出品公司", "head": 0, "tail": 1}, {"type": "导演", "head": 0, "tail": 2}]}]
这里有三条结果,也就是说我们在duie_prediction_example.json里面任意一种格式都行。
补充
- 针对于中文数据集,将配置参数max_span_size = 20,这里是实体的最大长度,可酌情修改。
- 在处理duie数据集的时候进行了一些细微的处理,具体可参考process.py里面。
参考
lavis-nlp/spert: PyTorch code for SpERT: Span-based Entity and Relation Transformer (github.com)
基于SpERT的中文关系抽取的更多相关文章
- 人工智能论文解读精选 | PRGC:一种新的联合关系抽取模型
NLP论文解读 原创•作者 | 小欣 论文标题:PRGC: Potential Relation and Global Correspondence Based Joint Relational ...
- DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...
- 文本自动摘要:基于TextRank的中文新闻摘要
TextRank算法源自于PageRank算法.PageRank算法最初是作为互联网网页排序的方法,经过轻微地改动,可以被应用于文本摘要领域. 本文分为两部分,第一部分介绍TextRank做文本自动摘 ...
- NLP(二十一)人物关系抽取的一次实战
去年,笔者写过一篇文章利用关系抽取构建知识图谱的一次尝试,试图用现在的深度学习办法去做开放领域的关系抽取,但是遗憾的是,目前在开放领域的关系抽取,还没有成熟的解决方案和模型.当时的文章仅作为笔者的 ...
- 一次关于关系抽取(RE)综述调研的交流心得
本文来自于一次交流的的记录,{}内的为个人体会. 基本概念 实事知识:实体-关系-实体的三元组.比如, 知识图谱:大量实时知识组织在一起,可以构建成知识图谱. 关系抽取:由于文本中蕴含大量事实知识,需 ...
- trie树信息抽取之中文数字抽取
这一章讲一下利用trie树对中文数字抽取的算法.trie树是一个非常有用的数据结构,可以应用于大部分文本信息抽取/转换之中,后续会开一个系列,对我在实践中摸索出来的各种抽取算法讲开来.比如中文时间抽取 ...
- 学习笔记CB003:分块、标记、关系抽取、文法特征结构
分块,根据句子的词和词性,按照规则组织合分块,分块代表实体.常见实体,组织.人员.地点.日期.时间.名词短语分块(NP-chunking),通过词性标记.规则识别,通过机器学习方法识别.介词短语(PP ...
- python 全栈开发,Day132(玩具管理页面,控制玩具通讯录,基于请求的好友关系建立)
先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.5.zip 注意:由于涉及到 ...
- AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法
AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法 2018-01-18 16:13蚂蚁金服/雾霾/人工智能 导读:词向量算法是自然语言处理领域的基础算法,在序列标注.问答系统和机 ...
- 深度学习实战篇-基于RNN的中文分词探索
深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平 ...
随机推荐
- C语言:多功能计算器
好家伙,这个东西有点折磨 这是一个多功能计算器 #include<stdio.h> #include<math.h> #include<windows.h> voi ...
- 开源IPTV源服务程序使用教程
Streaming-Media-Server-Pro 前言 我的目标是将程序打造成属于每个人的直播源服务,且对每个人完全开源免费!可作为家庭影院电视.视频等流媒体的提供商,兼容全平台,只需下载视频播放 ...
- Java SE 4、继承
继承 基本语法 class 子类 extends 父类{ } 子类就会自动拥有父类定义的属性和方法 父类又叫 超类,基类,子类又叫 派生类 细节 子类继承了所有的属性和方法,非私有的属性和方法可以在子 ...
- 【一月一本技术书】-【Go语言设计与实现】- 9月
Go : 2009.11.10 代表作:Docker.k8s.etcd 模仿C语言,目标:互联网的C语言 讲的晦涩难懂....硬板..放弃了好几次才读完.满分10分,打6分. 下个月:Python数据 ...
- Python数据科学手册-Numpy数组的排序
1) Numpy中的快速排序: np.sort 和 np.argsort np.sort 是快速排序,算法复杂度 O[ N log N] ,也可以选择归并排序和堆排序 如果不想修改原始输入数组,返 ...
- 【微服务】- 配置中心 - Nacos
微服务 - 配置中心 - Nacos 一个有梦有戏的人 @怒放吧德德 分享学习心得,欢迎指正,大家一起学习成长! 今天的学习任务就是学习使用Nacos作为配置中心. 努力克制自己,拒绝摆烂! 什么是配 ...
- KVM 下如何关闭 virbr0
安装KVM 后都会发现网络接口里多了一个叫做 virbr0 的虚拟网络接口: 这是由于安装和启用了 libvirt 服务后生成的,libvirt 在服务器(host)上生成一个 virtual net ...
- Beats:运用 Filebeat 来对微服务 API 进行分析
文章转载自:https://elasticstack.blog.csdn.net/article/details/118145104 需要学习的是httpjson请求的写法 使用 Filebeat 的 ...
- 案例分享 生产环境逐步迁移至k8s集群 - pod注册到consul
#案例分享 生产环境逐步迁移至k8s集群 - pod注册到consul #项目背景 多套业务系统, 所有节点注册到consul集群,方便统一管理 使用consul的dns功能, 所有节点hostnam ...
- 一文搞定 Spring事务
Spring 事务 上文 使用SpringJDBC 1.JDBC事务控制 不管你现在使用的是那一种ORM开发框架,只要你的核心是JDBC,那么所有的事务处理都是围绕着JDBC开展的,而JDBC之中 ...