论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
论文信息
论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs
论文作者:Qiaoyu Tan, Ninghao Liu, Xiao Huang, Rui Chen, Soo-Hyun Choi, Xia Hu
论文来源:2022, ArXiv
论文地址:download
论文代码:download
1 Introduction
MAE 在图上的应用。
2 Method
整体框架:

2.1 Encoder
本文的掩藏目标是随机掩藏一部分(30%)边,然后考虑 GCN、GraphSage 作为主干网络提取特征信息,对于被掩藏的边将通过 Decoder 训练得到。
掩藏策略:
- Undirected masking:将图看成无向图,删除 $(u,v)$ 之间的边,对应于 $A$ 中的两条边;
- Directed masking:将图看成有向图,删除 $(u,v)$ 之间的边,对应于 $A$ 中的一条有向边;
注意:上述两种策略边掩藏率是设置一样的。
2.2 Cross-correlation decoder
由于Encoder 采用的是基于消息传递机制的 Encoder,所以最终只得到被保留部分的节点潜在嵌入。
Encoder $K$ 层传播结构共生成的保留节点嵌入矩阵 $\left\{\mathbf{H}^{(1)}, \mathbf{H}^{(2)}, \cdots, \mathbf{H}^{(K)}\right\}$,对于存在的保留节点进行 cross-correlations 操作,即
$\mathbf{h}_{e_{v, u}}=\|_{k, j=1}^{K} \mathbf{h}_{v}^{(k)} \odot \mathbf{h}_{u}^{(j)}$
其中:
- $\|$ 表示连接;
- $\odot$ 表示元素乘法;
- $\mathbf{h}_{e_{v, u}} \in \mathbb{R}^{d K^{2}}$ 表示节点 $v$ 和节点 $u$ 之间的交叉表示,分别考虑它们的 $k$ 阶邻域和 $j$ 阶邻域;
为避免过于复杂,通常 $K=2$。
假设剩余的节点有 $m$ 个,那么输入到对应的 MLP Decoder 的将有 $m(m-1)$ (无向图)个特征向量,最终预测 $(u,v)$ 直接边存在的概率通过下式生成:
$y_{v, u}=\operatorname{MLP}\left(\mathbf{h}_{v}^{(K)}, \mathbf{h}_{u}^{(K)}\right)$
2.3 Reconstruction target
MGAE解码器,只重建掩码的边,目标函数如下:
$\mathcal{L}=-\sum\limits _{(v, u) \in \mathcal{E}_{\text {mask }}} \log \frac{\exp \left(\mathbf{y}_{v u}\right)}{\sum_{z \in \mathcal{V}} \exp \left(\mathbf{y}_{v z}\right)}$
为加速训练,本文采用负采样策略。
2.4 Algorithm
整体算法如下:

3 Experiments
数据集

Link prediction

Node classifification

4 Conclusion
图上边掩码AE。
修改历史
2022-06-17 创建文章
论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》的更多相关文章
- 论文解读(node2vec)《node2vec Scalable Feature Learning for Networks》
论文题目:<node2vec Scalable Feature Learning for Network>发表时间: KDD 2016 论文作者: Aditya Grover;Adit ...
- 论文解读(ClusterSCL)《ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs》
论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing ...
- 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...
- 论文解读(gCooL)《Graph Communal Contrastive Learning》
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW ...
- 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...
- 论文解读(MLGCL)《Multi-Level Graph Contrastive Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- 论文解读(MaskGAE)《MaskGAE: Masked Graph Modeling Meets Graph Autoencoders》
论文信息 论文标题:MaskGAE: Masked Graph Modeling Meets Graph Autoencoders论文作者:Jintang Li, Ruofan Wu, Wangbin ...
- 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...
随机推荐
- Python入门-安装Python开发环境
1.安装开发环境 #方法一:直接安装anaconda,解释器和环境,一个软件就可以包括,简单方便 参考地址:https://www.cnblogs.com/sui776265233/p/1145300 ...
- [已解决] 含gorm、sqlite3包的go程序构建失败 C:\Program Files\Go\pkg\tool\windows_amd64\link.exe: running gcc failed: exit status 1
gorm官方文档教程实例,构建出现错误.C:\Program Files\Go\pkg\tool\windows_amd64\link.exe: running gcc failed: exit st ...
- Metalama简介1. 不止是一个.NET跨平台的编译时AOP框架
Metalama是一个基于微软编译器Roslyn的元编程的库,可以解决我在开发中遇到的重复代码的问题.但是其实Metalama不止可以提供编译时的代码转换,更可以提供自定义代码分析.与IDE结合的自定 ...
- WinUI使用LiteDB做个女演员图鉴
为什么选择LiteDB 之前做uwp的时候有做过一个植物图鉴,当时图片使用的是在线图片,所以图片很多也并没有什么体验上的差别,但是直到有一天别人的网站挂掉了,图片访问不到了,当时想访问不到也没啥,反正 ...
- 今天遇到 Could not determine type for: java.util.List
今天遇到 Could not determine type for: java.util.List 用hibernate 映射好好的竟然出现这个问题 以前也遇到过,但不知道怎么给解决了,今天又遇到了, ...
- wireshark、tcpdump使用笔记
最近使用wireshark抓包icmp协议,过滤的命令如下所示: ip.addr eq 192.168.20.54 and ip.addr eq 192.168.50.131 and (icmp) 如 ...
- 跟我读CVPR 2022论文:基于场景文字知识挖掘的细粒度图像识别算法
摘要:本文通过场景文字从人类知识库(Wikipedia)中挖掘其背后丰富的上下文语义信息,并结合视觉信息来共同推理图像内容. 本文分享自华为云社区<[CVPR 2022] 基于场景文字知识挖掘的 ...
- 【面试普通人VS高手系列】Redis和Mysql如何保证数据一致性
今天分享一道一线互联网公司高频面试题. "Redis和Mysql如何保证数据一致性". 这个问题难倒了不少工作5年以上的程序员,难的不是问题本身,而是解决这个问题的思维模式. 下面 ...
- 新华三Gen10服务器ILO 5 安装中文语言包
ILO 5 安装中文语言包 在官网下载语言包文件,并解压 选择firmware&OS software,点击右侧的update firmware 选择本地文件,浏览到语言包里面的lpk文件,点 ...
- lab_1 清华大学ucore bootload启动ucore os(预备基础知识+实验过程)
实验1 :bootload启动ucore os 1.0实验内容: lab1中包含一个bootloader和一个OS.这个bootloader可以切换到X86保护模式,能够读磁盘并加载ELF执行文件格式 ...