【算法】经典的ML算法(后续结合工作实践完善心得)
- C4.5C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。
- CARTCART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法,详细介绍链接
- KNNK最近邻算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。详细介绍链接
- Naive Bayes朴素贝叶斯算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。详细介绍链接
- SVM支持向量机算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。详细介绍链接
- EM期望最大化算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。详细介绍链接
- AprioriApriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。详细介绍链接
- FP-Tree频繁模式树算法。这个算法也有被称为FP-growth算法,这个算法克服了Apriori算法的产生过多侯选集的缺点,通过递归的产生频度模式树,然后对树进行挖掘,后面的过程与Apriori算法一致。详细介绍链接
- PageRank网页重要性/排名算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到LinkSpan攻击。详细介绍链接
- HITSHITS算法是另外一个链接算法,部分原理与PageRank算法是比较相似的,HITS算法引入了权威值和中心值的概念,HITS算法是受用户查询条件影响的,他一般用于小规模的数据链接分析,也更容易遭受到攻击。详细介绍链接
- K-MeansK-Means算法是聚类算法,k在在这里指的是分类的类型数,所以在开始设定的时候非常关键,算法的原理是首先假定k个分类点,然后根据欧式距离计算分类,然后去同分类的均值作为新的聚簇中心,循环操作直到收敛。详细介绍链接
- BIRCHBIRCH算法利用构建CF聚类特征树作为算法的核心,通过树的形式,BIRCH算法扫描数据库,在内存中建立一棵初始的CF-树,可以看做数据的多层压缩。详细介绍链接
- AdaBoostAdaBoost算法是一种提升算法,通过对数据的多次训练得到多个互补的分类器,然后组合多个分类器,构成一个更加准确的分类器。详细介绍链接
- GSPGSP算法是序列模式挖掘算法。GSP算法也是Apriori类算法,在算法的过程中也会进行连接和剪枝操作,不过在剪枝判断的时候还加上了一些时间上的约束等条件。详细介绍链接
- PreFixSpanPreFixSpan算法是另一个序列模式挖掘算法,在算法的过程中不会产生候选集,给定初始前缀模式,不断的通过后缀模式中的元素转到前缀模式中,而不断的递归挖掘下去。详细介绍链接
- CBA基于关联规则分类算法。CBA算法是一种集成挖掘算法,因为他是建立在关联规则挖掘算法之上的,在已有的关联规则理论前提下,做分类判断,只是在算法的开始时对数据做处理,变成类似于事务的形式。详细介绍链接
- RoughSets粗糙集算法。粗糙集理论是一个比较新颖的数据挖掘思想。这里使用的是用粗糙集进行属性约简的算法,通过上下近似集的判断删除无效的属性,进行规制的输出。详细介绍链接
- GSpangSpan算法属于图挖掘算法领域。,主要用于频繁子图的挖掘,相较于其他的图算法,子图挖掘算法是他们的一个前提或基础算法。gSpan算法用到了DFS编码,和Edge五元组,最右路径子图扩展等概念,算法比较的抽象和复杂。详细介绍链接
- GA遗传算法。遗传算法运用了生物进化理论的知识来寻找问题最优解的算法,算法的遗传进化过程分选择,交叉和变异操作,其中选择操是非常关键的步骤,把更适应的基于组遗传给下一代。详细介绍链接
- DbScan基于空间密度聚类算法。dbScan作为一种特殊聚类算法,弥补了其他算法的一些不足,基于空间密,实现聚类效果,可以发现任意形状的聚簇。详细介绍链接
- GA_Maze遗传算法在走迷宫游戏中的应用。将走迷宫中的搜索出口路径的问题转化为遗传算法中的问题通过构造针对此特定问题的适值函数,基因移动方向的定位,巧的进行问题的求解。详细介绍链接
- CABDDCC基于连通图的分裂聚类算法。也是属于层次聚类算法主要分为2个阶段,第一阶段构造连通图。第二个阶段是分裂连通图,最终形成聚类结果。详细介绍链接
- Chameleon两阶段聚类算法。与CABDDCC算法相反,最后是通过对小簇集合的合并,形成最终的结果,在第一阶段主要是通过K近邻的思想形成小规模的连通图,第二阶段通过RI(相对互连性)和RC(相对近似性)来选一个最佳的簇进行合并。详细介绍链接
- RandomForest随机森林算法。算法思想是决策树+boosting.决策树采用的是CART分类回归数,通过组合各个决策树的弱分类器,构成一个最终的强分类器,在构造决策树的时候采取随机数量的样本数和随机的部分属性进行子决策树的构建,避免了过分拟合的现象发生。详细介绍链接
- KDTreeK-Dimension Tree。多维空间划分树,数据在多维空间进行划分与查找。主要用于关键信息的搜索,类似于在空间中的二分搜索,大大提高了搜索效率,在寻找目标元素时,使用了DFS深度优先的方式和回溯进行最近点的寻找。详细介绍链接
- MS-Apriori基于多支持度的Apriori算法。是Apriori算法的升级算法,弥补了原先Apriori算法的不足,还增加了支持度差别限制以及支持度计数统计方面的优化,无须再次重新扫描整个数据集,产生关联规则的时候可以根据子集的关系避免一些置信度的计算。详细介绍链接
- ACO蚁群算法。蚁群算法又称为蚂蚁算法。同GA遗传算法类似,也是运用了大自然规律的算法,用于在图中寻找最优路径的概率型算法。灵感来源于蚂蚁在寻找食物时会散播信息素的发现路径行为。详细介绍链接
【算法】经典的ML算法(后续结合工作实践完善心得)的更多相关文章
- paper 100:何恺明经典去雾算法
一:由简至美的最佳论文(作者:何恺明 视觉计算组) [视觉机器人:个人感觉学习他的经典算法固然很重要,但是他的解决问题的思路也是非常值得我们学习的] 那是2009年4月24日的早上,我收到了一封不同 ...
- 深度实战玩转算法, Java语言7个经典应用诠释算法精髓
深度实战玩转算法,以Java语言主讲,通过7款经典好玩游戏,真正将算法用于实际开发,由算法大牛ACM亚洲区奖牌获得者liuyubobobo主讲,看得见的算法,带领你进入一个不一样的算法世界,本套课程共 ...
- JS实现常用排序算法—经典的轮子值得再造
关于排序算法的博客何止千千万了,也不多一个轮子,那我就斗胆粗制滥造个轮子吧!下面的排序算法未作说明默认是从小到大排序. 1.快速排序2.归并排序3.冒泡排序4.选择排序(简单选择排序)5.插入排序(直 ...
- 【LeetCode-面试算法经典-Java实现】【053-Maximum Subarray(最大子数组和)】
[053-Maximum Subarray(最大子数组和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Find the contiguous subarray w ...
- 大公司面试经典数据结构与算法题C#/Java解答
几个大公司(IBM.MicroSoft and so on)面试经典数据结构与算法题C#解答 1.链表反转 我想到了两种比较简单的方法 第一种是需要开一个新的链表,将原链表的元素从后到前的插入到新链表 ...
- 【LeetCode-面试算法经典-Java实现】【062-Unique Paths(唯一路径)】
[062-Unique Paths(唯一路径)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 A robot is located at the top-left c ...
- 【LeetCode-面试算法经典-Java实现】【059-Spiral Matrix II(螺旋矩阵II)】
[059-Spiral Matrix II(螺旋矩阵II)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given an integer n, generate a ...
- 数据挖掘领域十大经典算法之—C4.5算法(超详细附代码)
https://blog.csdn.net/fuqiuai/article/details/79456971 相关文章: 数据挖掘领域十大经典算法之—K-Means算法(超详细附代码) ...
- 【LeetCode-面试算法经典-Java实现】【136-Single Number(仅仅出现一次的数字)】
[136-Single Number(仅仅出现一次的数字)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given an array of integers, ev ...
随机推荐
- 如何把一个数组中的对象的key值相等的对象合成一个对象
比如这样一个数组:[{category:"中国梦",value:"10000"},{category:"有国才有家",value:" ...
- linux中vim编辑器三种模式及常用命令的使用
Linux命令经常使用才会烂熟于心 命令行模式: 移动光标: 向下左右箭头可以移动光标: 将光标移动到行尾:$; 将光标移动到行头:^: 将光标移动到页尾:shift+g; 将光标移动到页头:1+sh ...
- win8.1/2012R2上面安装flash debugger
1.开启windows桌面体验 a. Launch Power Shell b. Run command "add-WindowsFeature Desktop-Experience&quo ...
- Java注解和注解处理器使用方法
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11492274.html 准备材料: 实体类: PrintDemo 注解类: PrintName ...
- async异步流程控制
http://cnodejs.org/topic/54acfbb5ce87bace2444cbfb 先安装:G:\www\nodejs\one\models>npm install async ...
- Go语言程序调试
1. Go语言二进制程序分析 在分析一些使用GOlang语言进行编译的恶意程序时,由于程序在被打包成二进制程序时会打包诸多引用的库,并且作者对二进制程序进行了去符号化,导致在动态或是静态分析时函 ...
- Python基础—基础数据类型int、bool、str(Day3)
一.int 数字 用于计算,+ - * / % **等 bit_lenth():转化成二进制的最小位数. i=4 print(i.bit_length())执行结果:3 1 0000 0001 2 ...
- 多图|一文详解Nacos参数!
Nacos 中的参数有很多,如:命名空间.分组名.服务名.保护阈值.服务路由类型.临时实例等,那这些参数都是什么意思?又该如何设置?接下来我们一起来盘它. 1.命名空间 在 Nacos 中通过命名空间 ...
- 力扣算法经典第一题——两数之和(Java两种方式实现)
一.题目 难度:简单 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数, 并返回它们的数组下标. 你可以假设每种输入只会对应一 ...
- Django中ORM创建表关系
一:django中ORM创建表关系 ORM创建外键关系 1.表与表之间的关系 1.表与表之间的关系 一对多 一对一 多对多 2.操作目标条件: 图书表 出版社表 作者表 作者详情表 3.外键关联 一对 ...