作者:朱晗 中国电子云

什么是分布式事务

事务处理几乎在每一个信息系统中都会涉及,它存在的意义是为了保证系统数据符合期望的,且相互关联的数据之间不会产生矛盾,即数据状态的一致性。

按照数据库的经典理论,原子性、隔离性、持久性。原子性要求数据要么修改要么回滚,隔离性要求事务之间相互独立不影响,持久性要求事务的执行能正确的持久化,不丢失数据。mysql 类的行式数据库通过 mvcc 多版本视图和 wal 预写日志等技术的协作,实现了单个服务使用单个数据源或者单个服务使用多个数据源场景的多事务的原子性、隔离性和持久性。

凤凰架构这本书中有描述,单个服务使用单个数据源称之为本地事务,单个服务使用多个数据源称之为全局事务,而分布式事务特指多个服务同时访问多个数据源的事务处理机制。

DBpack 简介

分布式事务的实现有很多方式,如可靠性事务队列,TCC事务,SAGA事务等。

可靠性事务队列,也就是BASE,听起来和强一致性的ACID,"酸碱"格格不入,它作为最终一致性的概念起源,系统性地总结了一种针对分布式事务的技术手段。

TCC 较为烦琐,如同名字所示,它分为以下三个阶段。

  • Try:尝试执行阶段,完成所有业务可执行性的检查(保障一致性),并且预留好全部需用到的业务资源(保障隔离性)。
  • Confirm:确认执行阶段,不进行任何业务检查,直接使用 Try 阶段准备的资源来完成业务处理。Confirm 阶段可能会重复执行,因此本阶段所执行的操作需要具备幂等性。
  • Cancel:取消执行阶段,释放 Try 阶段预留的业务资源。Cancel 阶段可能会重复执行,也需要满足幂等性。

SAGA 事务将事务进行了拆分,大事务拆分若干个小事务,将整个分布式事务 T 分解为 n 个子事务,同时为为每一个子事务设计对应的补偿动作。尽管补偿操作通常比冻结或撤销容易实现,但保证正向、反向恢复过程的能严谨地进行也需要花费不少的工夫。

DBPack 的分布式事务致力于实现对用户的业务无入侵,使用时下流行的sidecar架构,主要使用 ETCD Watch 机制来驱动分布式事务提交回滚,它对 HTTP 流量和 MYSQL 流量做了拦截代理,支持 AT 模式(自动补偿 SQL)和 TCC 模式(自动补偿 HTTP 请求)。

DBPack 的 AT 模式性能取决于全局锁的释放速度,哪个事务竞争到了全局锁就能对业务数据做修改,在单位时间内,全局锁的释放速度越快,竞争到锁的事务越多,性能越高。DBPack 创建全局事务、注册分支事务只是在 ETCD 插入两条 KV 数据,事务提交回滚时修改对应数据的状态,通过 ETCD Watch 机制感知到数据的变化就能立即处理数据的提交回滚,从而在交互上减少了很多 RPC 请求。

DBPack 的 TCC 模式中,请求会先到达 sidecar 后再注册 TCC 事务分支,确保 Prepare 先于 Cancel 执行。具体到操作的业务数据,建议使用 XID 和 BranchID 加锁。

DBpack 赋能 python 微服务

以上的前戏已铺垫,后文以讲解python 微服务代码为主,不涉及 dbpack 源码,感兴趣的童鞋可去自行调试了解。

https://github.com/CECTC/dbpack-samples/blob/main/python

这里会提到三个微服务,首先是是事务发起方,其次是订单系统,最后是产品库存系统。而每一个微服务,都使用dbpack代理。事务发起方请求成功后,当订单正常commit后,产品库存要发生正常扣除,一旦一个微服务未完成,另一个则要发生回滚,也就是说,两个微服务系统要保持一致。

首先,模拟分布式事务发起方的服务,该服务会注册两个 handler,一个会发起正常的请求,走 dbpack 代理发起分布式事务,另一个会则会非正常返回。事务发起方会根据 http 的请求情况,决定是否要发起分布式事务回滚。

以下借用了 flask web 框架实现了事务发起方的两个handler,通过两个http请求我们可以模拟分布式事务发起或者回滚。

from flask import Flask, request, jsonify
import requests app = Flask(__name__) create_so_url = "http://order-svc:3001/createSo"
update_inventory_url = "http://product-svc:3002/allocateInventory" @app.route('/v1/order/create', methods=['POST'])
def create_1():
return create_so(rollback=False) @app.route('/v1/order/create2', methods=['POST'])
def create_2():
return create_so(rollback=True) def create_so(rollback=True):
xid = request.headers.get("x-dbpack-xid") so_items = [dict(
product_sysno=1,
product_name="apple iphone 13",
original_price=6799,
cost_price=6799,
deal_price=6799,
quantity=2,
)] so_master = [dict(
buyer_user_sysno = 10001,
seller_company_code = "SC001",
receive_division_sysno = 110105,
receive_address = "beijing",
receive_zip = "000001",
receive_contact = "scott",
receive_contact_phone = "18728828296",
stock_sysno = 1,
payment_type = 1,
so_amt = 6999 * 2,
status = 10,
appid = "dk-order",
so_items = so_items,
)] success = (jsonify(dict(success=True, message="success")), 200)
failed = (jsonify(dict(success=False, message="failed")), 400)
headers = {
"Content-Type": "application/json",
"xid": xid
} so_req = dict(req=so_master)
resp1 = requests.post(create_so_url, headers=headers, json=so_req)
if resp1.status_code == 400:
return failed ivt_req = dict(req=[dict(product_sysno= 1, qty=2)])
resp2 = requests.post(update_inventory_url, headers=headers, json=ivt_req)
if resp2.status_code == 400:
return failed if rollback:
print("rollback")
return failed return success if __name__ == "__main__":
app.run(host="0.0.0.0", port=3000)

那么如何使用 dbpack 代理该服务呢?

$./dist/dbpack start --config ../dbpack-samples/configs/config-aggregation.yaml

$ cat ../dbpack-samples/configs/config-aggregation.yaml
listeners:
- protocol_type: http
socket_address:
address: 0.0.0.0
port: 13000
config:
backend_host: aggregation-svc:3000
filters:
- httpDTFilter filters:
- name: httpDTFilter
kind: HttpDistributedTransaction
conf:
appid: aggregationSvc
transaction_infos:
- request_path: "/v1/order/create"
timeout: 60000
- request_path: "/v1/order/create2"
timeout: 60000 distributed_transaction:
appid: aggregationSvc
retry_dead_threshold: 130000
rollback_retry_timeout_unlock_enable: true
etcd_config:
endpoints:
- etcd:2379

可想而知,以上的微服务两个 handler 是通过 filters这部分的定义来配置拦截的。

接着是订单系统。

from flask import Flask, jsonify, request
from datetime import datetime
import mysql.connector import time
import random app = Flask(__name__) insert_so_master = "INSERT /*+ XID('{xid}') */ INTO order.so_master({keys}) VALUES ({placeholders})"
insert_so_item = "INSERT /*+ XID('{xid}') */ INTO order.so_item({keys}) VALUES ({placeholders})" def conn():
retry = 0
while retry < 3:
time.sleep(5)
try:
c = mysql.connector.connect(
host="dbpack3",
port=13308,
user="dksl",
password="123456",
database="order",
autocommit=True,
)
if c.is_connected():
db_Info = c.get_server_info()
print("Connected to MySQL Server version ", db_Info)
return c
except Exception as e:
print(e.args)
retry += 1 connection = conn()
cursor = connection.cursor(prepared=True,) @app.route('/createSo', methods=['POST'])
def create_so():
xid = request.headers.get('xid')
reqs = request.get_json()
if xid and "req" in reqs:
for res in reqs["req"]:
res["sysno"] = next_id()
res["so_id"] = res["sysno"]
res["order_date"] = datetime.now()
res_keys = [str(k) for k,v in res.items() if k != "so_items" and str(v) != ""]
so_master = insert_so_master.format(
xid=xid,
keys=", ".join(res_keys),
placeholders=", ".join(["%s"] * len(res_keys)),
) try:
cursor.execute(so_master, tuple(res.get(k, "") for k in res_keys))
except Exception as e:
print(e.args) so_items = res["so_items"]
for item in so_items:
item["sysno"] = next_id()
item["so_sysno"] = res["sysno"]
item_keys = [str(k) for k,v in item.items() if str(v) != "" ]
so_item = insert_so_item.format(
xid=xid,
keys=", ".join(item_keys),
placeholders=", ".join(["%s"] * len(item_keys)),
)
try:
cursor.execute(so_item, tuple(item.get(k, "") for k in item_keys))
except Exception as e:
print(e.args) return jsonify(dict(success=True, message="success")), 200 return jsonify(dict(success=False, message="failed")), 400 def next_id():
return random.randrange(0, 9223372036854775807) if __name__ == '__main__':
app.run(host="0.0.0.0", port=3001)

注意到 sql 中以注解的形式添加使用了 xid ,主要是方便配合 dbpack 识别后做出相应的分布式事务处理,也就是回滚还是commit。

这里数据库连接使用 autocommit 这种方式。同时,使用 python 中的 mysql.connector 这个 lib 来支持 sql 传输中的二段式加密传输协议,见代码中声明的prepared=true

用以下命令,使用 dbpack 代理 order 微服务:

./dist/dbpack start --config ../dbpack-samples/configs/config-order.yaml

最后是产品库存系统,详细代码如下:

from flask import Flask, jsonify, request

import time
import mysql.connector app = Flask(__name__) allocate_inventory_sql = "update /*+ XID('{xid}') */ product.inventory set available_qty = available_qty - %s, allocated_qty = allocated_qty + %s where product_sysno = %s and available_qty >= %s;" def conn():
retry = 0
while retry < 3:
time.sleep(5)
try:
c = mysql.connector.connect(
host="dbpack2",
port=13307,
user="dksl",
password="123456",
database="product",
autocommit=True,
) if c.is_connected():
db_Info = c.get_server_info()
print("Connected to MySQL Server version ", db_Info)
return c
except Exception as e:
print(e.args)
retry += 1 connection = conn()
cursor = connection.cursor(prepared=True,) @app.route('/allocateInventory', methods=['POST'])
def create_so():
xid = request.headers.get('xid')
reqs = request.get_json()
if xid and "req" in reqs:
for res in reqs["req"]:
try:
cursor.execute(allocate_inventory_sql.format(xid=xid), (res["qty"], res["qty"], res["product_sysno"], res["qty"],))
except Exception as e:
print(e.args) return jsonify(dict(success=True, message="success")), 200 return jsonify(dict(success=False, message="failed")), 400 if __name__ == '__main__':
app.run(host="0.0.0.0", port=3002)

同样,用以下命令使用 dbpack 代理 product 微服务:

./dist/dbpack start --config ../dbpack-samples/configs/config-product.yaml

我们可以使用docker-compose一键拉起以上三个微服务:

docker-compose up

正常情况下,以下请求会触发订单系统和产品库存系统的正常 commit:

curl -XPOST http://localhost:13000/v1/order/create

而以下命令虽然正常请求了订单系统和产品库存的 API,不管事务是否正常执行,由于事务发起方状态码不正常,要求"回滚",所以会导致已经 commit 的微服务发生回滚,以此保证分布式系统的一致性:

curl -XPOST http://localhost:13000/v1/order/create2

参考资料

DBPack 赋能 python 微服务协调分布式事务的更多相关文章

  1. [跨数据库、微服务] FreeSql 分布式事务 TCC/Saga 编排重要性

    前言 FreeSql 支持 MySql/SqlServer/PostgreSQL/Oracle/Sqlite/Firebird/达梦/Gbase/神通/人大金仓/翰高/Clickhouse/MsAcc ...

  2. 最近整理出了有关大数据,微服务,分布式,Java,Python,Web前端,产品运营,交互等1.7G的学习资料,有视频教程,源码,课件,工具,面试题等等。这里将珍藏多年的资源免费分享给各位小伙伴们

    大数据,微服务,分布式,Java,Python,Web前端,产品运营,交互 领取方式在篇尾!!! 基础篇.互联网架构,高级程序员必备视频,Linux系统.JVM.大型分布式电商项目实战视频...... ...

  3. dotnet core 也能协调分布式事务啦!

    2022 年 5 月 24 日,我们发布了 DBPack v0.1.0 版本,该版本主要 release 了分布式事务功能.在我们的规划里,DBPack 是要支持所有微服务开发语言协调分布式事务的,但 ...

  4. python 微服务方案

    介绍 使用python做web开发面临的一个最大的问题就是性能,在解决C10K问题上显的有点吃力.有些异步框架Tornado.Twisted.Gevent 等就是为了解决性能问题.这些框架在性能上有些 ...

  5. SpringCloud微服务架构分布式组件如何共享session对象

    一.简单做一个背景说明1.为说明问题,本文简单微服务架构示例如下 2.组件说明分布式架构,每个组件都是集群或者主备.具体说明如下:zuul service:网关,API调用都走zuul service ...

  6. 微服务之分布式跟踪系统(springboot+zipkin+mysql)

    通过上一节<微服务之分布式跟踪系统(springboot+zipkin)>我们简单熟悉了zipkin的使用,但是收集的数据都保存在内存中重启后数据丢失,不过zipkin的Storage除了 ...

  7. python 微服务开发书中几个方便的python框架

    python 微服务开发是一本讲python 如果进行微服务开发的实战类书籍,里面包含了几个很不错的python 模块,记录下,方便后期回顾学习 处理并发的模块 greenlet && ...

  8. 使用 Consul 作为 Python 微服务的配置中心

    使用 Consul 作为 Python 微服务的配置中心 Consul 作为数据中心,提供了 k/v 存储的功能,我们可以利用这个功能为 Python 微服务提供配置中心. Consul 提供了 HT ...

  9. 推荐一款 Python 微服务框架 - Nameko

    1. 前言 大家好,我是安果! 考虑到 Python 性能及效率性,Python Web 端一直不温不火,JAVA 和 Golang 的微服务生态一直很繁荣,也被广泛用于企业级应用开发当中 ​本篇文章 ...

随机推荐

  1. Ubu18.0-NVIDIA显卡驱动重装

    //图片仅供参考,请勿代入 问题情况:电脑装了双系统,WIN10+Ubu,Ubu分辨率不稳定,经常发生变化 显卡型号:打开设备管理器进行查看 解决方法:重装NVIDIA显卡驱动 1.去英伟达官网下载自 ...

  2. 有关JavaScript事件循环的若干疑问探究

    起因 即使我完全没有系统学习过JavaScript的事件循环机制,在经过一定时间的经验积累后,也听过一些诸如宏任务和微任务.JavaScript是单线程的.Ajax和Promise是一种异步操作.se ...

  3. Handler异步通信系统

    handler是Android给我们提供用来更新UI的一套机制,也是一套消息处理机制,我们可以发消息,也可以通过它处理消息. Handler机制主要的几个角色:Handler,Message,Loop ...

  4. Windows 下 MSYS2 环境配置和 MinGW-w64 C++ 环境配置

    Windows 下 MSYS2 环境配置和 MinGW-w64 C++ 环境配置 1.简介 本文主要是 Windows 下 MSYS2 环境配置和 MinGW-w64 C++编译环境配置方法 2.下载 ...

  5. 云平台短信验证码通知短信java/php/.net开发实现

    一.本文目的 大部分平台都有一个接入发送短信验证码.通知短信的需求.虽然市场上大部分平台的接口都只是一个非常普通的HTTP-GET请求,但终归有需要学习和借鉴使用的朋友. 本文的初衷是主要提供学习便利 ...

  6. 浅谈MatrixOne如何用Go语言设计与实现高性能哈希表

    目录 MatrixOne数据库是什么? 哈希表数据结构基础 哈希表基本设计与对性能的影响 碰撞处理 链地址法 开放寻址法 Max load factor Growth factor 空闲桶探测方法 一 ...

  7. 通知:PostgreSQL证书申报退税请抓紧!

    2021年个税申报已于3月开始为了确保PostgreSQL证书能顺利退税中心特调研了学员中仅针对证书一项做退税申请没几天就得到结果2021年取得的PostgreSQL职业 技术证书确定可以退税!   ...

  8. KTL 一个支持C++14编辑公式的K线技术工具平台 - 第六版,支持OpenGL,3D上帝视角俯视K线概貌。

    K,K线,Candle蜡烛图. T,技术分析,工具平台 L,公式Language语言使用c++14,Lite小巧简易. 项目仓库:https://github.com/bbqz007/KTL 国内仓库 ...

  9. 蓝桥杯Web:【功能实现】菜单树检索

    [功能实现]菜单树检索 背景介绍 实际工作中很多前端攻城狮都会遇到这样一个需求:在多级菜单树中模糊搜索匹配的菜单项,并显示出来. 本题需要在已提供的基础项目中使用 Vue.js 知识,实现对已提供的二 ...

  10. Docker容器的数据卷

    一.数据卷概念 1.数据卷是宿主机中的一个目录或文件 2.当容器目录和数据卷目录绑定后,对方的修改会立即同步 3.一个数据卷可以被多个容器同时挂载 4.一个容器也可以挂载多个数据卷 简单理解:有点类似 ...