支持向量机(SVM)公式整理
支持向量机可以分为三类:
- 线性可分的情况 ==> 硬间隔最大化 ==> 硬间隔SVM
- 近似线性可分的情况 ==> 软间隔最大化 ==> 线性支持向量机
- 线性不可分的情况 ==> 核技巧/软间隔最大化 ==> 非线性SVM
硬间隔向量机(hard margin svm)
任务:寻找一条与所有支持向量距离最远的决策边界,这条决策边界就是\(0 = w^T X + b\),即:
w^T X_i + b < 0 , y_i < 0
\]
所以问题可以描述为:
margin(w,b) = min \; distance(w,b,x_i) = min \frac{1}{|w|}|w^Tx_i+b|
\]
带换一下也就是
s.t. y_i(w^Tx_i+b)>0 \; ==>\; \exists r > 0 , min \; y_i(w^T+b)=r
\]
用r来表示就是:
\exists r > 0 , min \; y_i(w^T+b)=r
\]
这里我的理解是:因为\(wx_i+b=r\) ==> \(\frac{w}{r} x_i + \frac{b}{r}=1\),所以不管r取什么值,\(w=\frac{w_0}{r}\),\(b=\frac{b_0}{r}\), 所以r的取值所带来的影响会被最后的w和b所融合进去,所以r=1也没关系。最终的问题可以描述为(这里是N个不等式):
s.t. \; y_i(w^T+b)-1>=0 \qquad i=1,2,3,...,N
\]
构造拉格朗日函数,引入N个参数\(\alpha\),转换成对偶函数如下(大括号表示不出来我也很绝望):
s.t.\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\alpha_i >=0 \; i = 1,2,3,.. N
\]
使用KKT条件,得到的解:
\]
\]
最终的解是:
\]
\]
软间隔向量机(soft margin svm)
软间隔向量机采用合页损失函数,真实数据中,严格线性可分的数据很少。合页损失函数允许分类时的一点点误差。损失函数如下:
1-y_{\overline{2}}\left(w^{\top} x_{i}+b\right) >0, \quad loss =1-y_{i}\left(w^{\top} x_{i}+b\right)
\]
也就是,正确分类并且函数间隔大于1时没有误差,错误分类时,距离决策边界越远的点,受到的惩罚越大。使用合页函数的做优化问题可以表示为:
\]
令\(\xi_{i}=1-y_{i}(w^{T} x_{i}+b), \quad \xi_{i} \geqslant 0\),则,分两种情况:
1、\(1-y_{i}(w^{T} x_{i}+b)>0\) ==> \(\xi_i =1-y_{i}\left(w^{T} x_{i}+b\right)\) ==> \(y_i(wx+b)=1-\xi_i\)
2、\(1-y_{i}(w^{T} x_{i}+b)\leqslant0\) ==> \(y_i(wx+b)\leqslant1\) ==> \(y_i(wx+b)\leqslant1-\xi_i\) (\(\xi_i=0\))
综合上面两种情况,可以直接写为:\(y_i(wx+b)\leqslant1-\xi_i\),这样的话,最优化函数就变成了下面的样子:
s.t. y_{i}\left(w^{T} x_{i}+b\right) \geqslant 1-\xi_{i}, \quad \xi_{i} \geqslant 0
\]
这两个式子是等价的。再《统计学习方法》中,先给出了后面的式子,再介绍了合页损失函数
这两个式子转换成等价的对偶函数如下:
s.t. \sum_{i=1}^{N}\alpha_iy_i=0 \qquad \\
0\leq \alpha_i \leq C, \;i=1,2,...N
\]
对偶函数的解是:
\]
\]
决策函数是:
\]
KKT条件
\]
\]
\]
\]
对于\(\lambda_{i}(1-y_{i}(w^{T} x_{i}+b))=0\) 只要 \(\lambda_i \neq0\) ,就有 \(1-y_{i}(w^{T} x_{i}+b=0\),也就是说\(x_i\)再决策边界上,\(x_i\)是支持向量
- 原问题与对偶问题育有强对偶关系 <===> 满足KKT条件
非线性支持向量机(核函数)
核函数可以对特征进行升维(当然,不一定非要是升维,也可能是转换到另一个空间),高维空间的运算量巨大,所以直接使用低维的计算结果,作为两个高维向量的内积:
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)(x_1^{'2}, \sqrt{2}x_1^{'} x_2^{'}, x_2^{'2}) \\\\
= (x_1 x_1^{'} + x_2 x_2^{'}) = (xx^{'})^2 =K(x, x^{'})
\]
核函数等价于两个映射哈函数的内积,不过,这个映射函数不需要手动指出。因为当两个映射函数相乘时,内积的结果可以用核函数表示。而映射函数在最优化问题中都是成对出现的。即出现映射函数的地方都可以用核函数替代。
如果用映射函数将x映射到高维空间,那么应该用高维向量替换x所在的位置:
\]
\]
\]
那么最终拟合的结果也应该是由高维向量表示的:
\]
\]
高斯核函数(RBF)
正太分布:
\]
高斯核函数:
\]
对于正态分布来说:\(\sigma\)是标准差,\(\sigma\)越小,曲线越窄。\(\sigma\)越大,曲线越宽
对于高斯核函数来说:\(\gamma\)的值越大,曲线越窄;\(\gamma\)的值越小,曲线越宽;
支持向量机(SVM)公式整理的更多相关文章
- 机器学习——支持向量机SVM
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...
- 机器学习:Python中如何使用支持向量机(SVM)算法
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...
- 以图像分割为例浅谈支持向量机(SVM)
1. 什么是支持向量机? 在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...
- 机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...
- 支持向量机SVM——专治线性不可分
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...
- 一步步教你轻松学支持向量机SVM算法之案例篇2
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- OpenCV支持向量机(SVM)介绍
支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向 ...
- 支持向量机SVM 参数选择
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...
- 机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻 ...
- 转:机器学习中的算法(2)-支持向量机(SVM)基础
机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...
随机推荐
- CSS 选择器(一):属性选择器
属性选择器的介绍 属性选择器顾名思义就是通过标签的属性来查找标签的选择器.让我们来回忆一下标签的属性是什么?HTML5 的所有标签共同拥有的属性叫作全局属性,除此之外还有标签自己拥有的属性,就叫作私有 ...
- [CSharpTips]C#读取SQLite数据库中文乱码
C#读取SQLite数据库中文乱码 C#在读取C++写入数据的Sqlite数据库中的Text内容时,会出现乱码,因为C++默认编码格式为GB2312,而Sqlite编码格式为UTF-8,存入时不统一就 ...
- Java使用定时任务详解
定时任务 目录 定时任务 SpringBoot定时任务 默认单线程 使用异步多线程 Spring定时任务XML配置(注解形式几乎同上) 使用springTask: ----springTask为spr ...
- iOS 苹果集成登录及苹果图标的制作要求
前言 如果要上架的应用集成了三方登录,那么在审核时,苹果会强制要求应用也要集成苹果登录.如果应用没有集成一般情况下都会被审核团队给打回来. 苹果集成登录 首先,你需要在开发者中心,找到你的应用,勾选上 ...
- 项目实践2:(问卷)用html和css做一个网页
好家伙,又来写项目了 1.以下是考题,姑且把他理解为甲方吧. 2.以下是附带的题目素材 开干.
- .NET使用StackTrace获取方法调用者信息
前言 在日常工作中,偶尔需要调查一些诡异的问题,而业务代码经过长时间的演化,很可能已经变得错综复杂,流程.分支众多,如果能在关键方法的日志里添加上调用者的信息,将对定位问题非常有帮助. 介绍 Stac ...
- [SDR] GNU Radio 系列教程(二) —— 绘制第一个信号分析流程图
目录 1.前言 2.启动 GNU Radio 3.新增块 4.运行 本文视频 参考链接 1.前言 本文将介绍如何在 GNU Radio 中创建和运行第一个流程图. 2.启动 GNU Radio GNU ...
- KingbaseES批量数据加载的实践技巧
有时,KingbaseES数据库需要在单个或最少的步骤中导入大量数据,这通常称为批量数据导入.其中数据源通常是一个或多个大文件,这个过程有时可能非常慢. 造成性能不佳的原因有很多:索引.触发器.外键. ...
- Asible_hosts
定义主机清单 vim /etc/ansible/hosts 示例 # 中括号分组,后面的http_port是自己定义的参数可以在playbook中使用 [wbservs] 192.168.1.101 ...
- Java开发学习(三十四)----Maven私服(二)本地仓库访问私服配置与私服资源上传下载
一.本地仓库访问私服配置 我们通过IDEA将开发的模块上传到私服,中间是要经过本地Maven的 本地Maven需要知道私服的访问地址以及私服访问的用户名和密码 私服中的仓库很多,Maven最终要把资源 ...