SVPWM实现概述
SVPWM是FOC的基础,其实现流程大致如下所示:
1. 判断合成矢量所在扇区
2. 计算相邻矢量作用时间
3. 计算各桥臂导通时间
4. 得到各相PWM占空比
5. 更新相应寄存器值
SVPWM目标矢量是根据其所在扇区选择非零矢量与零矢量合成而成,有五段式、七段式、混合式,七段式开关次数较多,但谐波较小;五段式开关次数是七段式的一半,但谐波较大,下面的计算过程以七段式为例
1. 判断合成矢量所在扇区
合成矢量${U_{{\rm{ref}}}}$在二相坐标系$\alpha $轴和$\beta $轴的分量分别为${U_\alpha }$、${U_\beta }$(在FOC中,由反Park变换得到),由合成矢量落在各扇区的充分必要条件分析可知,可按如下方法确定合成矢量所属扇区:
令
${U_1} = {U_\beta }$
${U_2} = \frac{{\sqrt 3 {U_\alpha } - {U_\beta }}}{2}$
${U_3} = \frac{{ - \sqrt 3 {U_\alpha } - {U_\beta }}}{2}$
若${U_1} > 0$,则A = 1,否则A=0;
若${U_2} > 0$,则B = 1,否则B=0;
若${U_3} > 0$,则C = 1,否则C=0;
令 N = 4C +2B+A
N值与扇区关系对应如下:
|
N |
1 |
2 |
3 |
4 |
5 |
6 |
|
扇区 |
II |
VI |
I |
IV |
III |
V |
2. 计算各相邻矢量作用时间
令
$\left\{ \begin{array}{l}
X = A{U_\beta }\\
Y = \frac{A}{2}(\sqrt 3 {U_\alpha } + {U_\beta })\\
Z = \frac{A}{2}( - \sqrt 3 {U_\alpha } + {U_\beta })
\end{array} \right.$
$A = \frac{{\sqrt 3 T}}{{{U_{DC}}}}$,${U_{DC}}$为母线电压,$T$为合成矢量${U_{{\rm{out}}}}$作用时间
|
扇区 |
I |
II |
III |
IV |
V |
VI |
|
t1 |
-Z |
Z |
-X |
X |
-Y |
Y |
|
t2 |
X |
Y |
-Y |
Z |
-Z |
-X |
令
$\left\{ \begin{array}{l}
{T_a} = \frac{{T - {t_1} - {t_2}}}{4}\\
{T_b} = {T_a} + \frac{{{t_1}}}{2}\\
{T_c} = {T_b} + \frac{{{t_2}}}{2}
\end{array} \right.$
3. 计算各桥臂导通时间及占空比
|
扇区 |
I |
II |
III |
IV |
V |
VI |
| ${T_{CM1}}$ |
Ta |
Tb | Tc | Tc | Tb | Ta |
| ${T_{CM2}}$ |
Tb |
Ta | Ta | Tb | Tc | Tc |
|
${T_{CM3}}$ |
Tc | Tc | Tb | Ta | Ta | Tb |
4. 将上面计算出的${T_{CM1}}$, ${T_{CM2}}$, ${T_{CM3}}$送入单片机定时器寄存器即可产生SVPWM
SVPWM实现概述的更多相关文章
- STM32控制永磁同步电机 | FOC电机控制算法概述
1. FOC基本概念 参考:https://www.sohu.com/a/432103720_120929980 FOC(field-oriented control)为磁场导向控制,又称为矢量控制( ...
- 【AR实验室】ARToolKit之概述篇
0x00 - 前言 我从去年就开始对AR(Augmented Reality)技术比较关注,但是去年AR行业一直处于偶尔发声的状态,丝毫没有其"异姓同名"的兄弟VR(Virtual ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Swift3.0服务端开发(一) 完整示例概述及Perfect环境搭建与配置(服务端+iOS端)
本篇博客算是一个开头,接下来会持续更新使用Swift3.0开发服务端相关的博客.当然,我们使用目前使用Swift开发服务端较为成熟的框架Perfect来实现.Perfect框架是加拿大一个创业团队开发 ...
- .Net 大型分布式基础服务架构横向演变概述
一. 业务背景 构建具备高可用,高扩展性,高性能,能承载高并发,大流量的分布式电子商务平台,支持用户,订单,采购,物流,配送,财务等多个项目的协作,便于后续运营报表,分析,便于运维及监控. 二. 基础 ...
- [C#] 进阶 - LINQ 标准查询操作概述
LINQ 标准查询操作概述 序 “标准查询运算符”是组成语言集成查询 (LINQ) 模式的方法.大多数这些方法都在序列上运行,其中的序列是一个对象,其类型实现了IEnumerable<T> ...
- 【基于WinForm+Access局域网共享数据库的项目总结】之篇一:WinForm开发总体概述与技术实现
篇一:WinForm开发总体概述与技术实现 篇二:WinForm开发扇形图统计和Excel数据导出 篇三:Access远程连接数据库和窗体打包部署 [小记]:最近基于WinForm+Access数据库 ...
- Java消息队列--JMS概述
1.什么是JMS JMS即Java消息服务(Java Message Service)应用程序接口,是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送 ...
- [AlwaysOn Availability Groups]健康模型 Part 1——概述
健康模型概述 在成功部署AG之后,跟踪和维护健康状况是很重要的. 1.AG健康模型概述 AG的健康模型是基于策略管理(Policy Based Management PBM)的.如果不熟悉这个特性,可 ...
随机推荐
- Haar小波分析
一 尺度函数与小波函数 基本尺度函数定义为:,对其向右平移任意 k 个单位,构成函数族 , 该函数族在 空间中正交,证明如下: 1 : 2 当 m 不等于 k 时, 函数族 构成一组正交基,并形成 ...
- Solution -「BZOJ 4316」小C的独立集
\(\mathcal{Description}\) Link. 求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集. \(n\le5\times10^4\),\(m\le6\ ...
- INTERSPEECH 2015 | Scalable Distributed DNN Training Using Commodity GPU Cloud Computing
一般来说,全连接层的前向和后向传递所需的计算量与权重的数量成正比.此外,数据并行训练中所需的带宽与可训练权重的数量成比例.因此,随着每个节点计算速度的提高,所需的网络带宽也随之增加.这篇文章主要是根据 ...
- Linux性能优化之内存性能统计信息
关于内存的概念及其原理在任何一本介绍操作系统的书本中都可以查阅到. 理论放一遍,在Linux操作系统中如何查看系统内存使用情况呢?看看内存统计信息有哪些维度. 一.内存使用量 详细使用方法,man f ...
- Python3+PyMysql
原文地址(持续更新ing-):https://www.caituotuo.top/6bf90683.html 1. 安装PyMySQL pip3 install PyMySQL 2. 创建数据库 # ...
- 突破限制,CSS font-variation 可变字体的魅力
今天,在 CodePen 上看到一个很有意思的效果 -- GSAP 3 ETC Variable Font Wave,借助了 JS 动画库 GSAP 实现,一起来看看: 我寻思着能否使用 CSS 复刻 ...
- k8s搭建链路监控:skywalking
skywalking架构及简介 官网:https://github.com/apache/skywalking 简介 Java, .NET Core, NodeJS, PHP, and Python ...
- [Java]Thinking in Java 练习2.12
题目 对HelloDate.java的简单注释文档的示例执行javadoc,然后通过Web浏览器查看结果. 代码 1 //: HW/Ex2_2.java 2 import java.util.*; 3 ...
- [系统安全] 十六.PE文件逆向基础知识(PE解析、PE编辑工具和PE修改)
[系统安全] 十六.PE文件逆向基础知识(PE解析.PE编辑工具和PE修改) 文章来源:https://masterxsec.github.io/2017/05/02/PE%E6%96%87%E4%B ...
- Python:Excel
xlrd与xlwt:xls文件 如果不想看前半部分的基础知识,可以直接看最后的总结部分 1.两个模块 读xlrd 写xlwt import xlrd,xlwt 2.读 2.1 文件.表格信息的获取 打 ...