线性方程组迭代算法的Python实现

jacobi,GS,SOR迭代法

def JacobiIter(A:np.ndarray,
b:np.ndarray,
tol:float=1e-5,
maxIter:int=100)->Tuple[np.ndarray,np.ndarray]:
"""使用Jacobi迭代法求解线性方程组Ax=b input:
A: np.ndarray, 系数矩阵
b: np.ndarray, 右端常数
tol: float, 误差限
maxIter: int, 最大迭代次数 output:
x: np.ndarray, 解向量
errors: np.ndarray, 误差序列
"""
from numpy import dot
from numpy.linalg import norm
x0=np.zeros(b.shape)
L=-1*np.tril(A,k=-1).copy()
U=-1*np.triu(A,k=1).copy()
D=np.diag(np.diag(A)).copy()
Dinv=np.linalg.inv(D)
errors=[]
for i in range(maxIter):
x_next=dot(Dinv,(dot((L+U),x0)+b))
# error check
error=norm(b-dot(A,x_next),2)/norm(b,2)
errors.append(error)
if error<tol:
return x_next,np.array(errors)
else:
x0=x_next def GaussIter(A:np.ndarray,
b:np.ndarray,
tol:float=1e-5,
maxIter:int=100)->Tuple[np.ndarray,np.ndarray]:
"""使用Gauss-Seidel迭代法求解线性方程组Ax=b input:
A: np.ndarray, 系数矩阵
b: np.ndarray, 右端常数
tol: float, 误差限
maxIter: int, 最大迭代次数 output:
x: np.ndarray, 解向量
errors: np.ndarray, 误差序列
"""
from numpy import dot
from numpy.linalg import norm
x0=np.zeros(b.shape)
L=-1*np.tril(A,k=-1).copy()
U=-1*np.triu(A,k=1).copy()
D=np.diag(np.diag(A)).copy()
DsubLinv=np.linalg.inv(D-L)
errors=[]
for i in range(maxIter):
x_next=DsubLinv.dot(U).dot(x0)+DsubLinv.dot(b)
# error check
error=norm(b-dot(A,x_next),2)/norm(b,2)
errors.append(error)
if error<tol:
return x_next,np.array(errors)
else:
x0=x_next def SORIter(A:np.ndarray,
b:np.ndarray,
w:float=1.0,
tol:float=1e-5,
maxIter:int=100)->Tuple[np.ndarray,np.ndarray]:
"""使用SOR迭代法求解线性方程组Ax=b input:
A: np.ndarray, 系数矩阵
b: np.ndarray, 右端常数
w: float, 松弛因子(0~2.0)
tol: float, 误差限
maxIter: int, 最大迭代次数 output:
x: np.ndarray, 解向量
errors: np.ndarray, 误差序列
"""
from numpy import dot
from numpy.linalg import norm
x0=np.zeros(b.shape)
L=-1*np.tril(A,k=-1).copy()
U=-1*np.triu(A,k=1).copy()
D=np.diag(np.diag(A)).copy() DsubOmegaLinv=np.linalg.inv(D-w*L)
errors=[]
for i in range(maxIter):
x_next=DsubOmegaLinv.dot((1-w)*D+w*U).dot(x0)+w*DsubOmegaLinv.dot(b)
# error check
error=norm(b-dot(A,x_next),2)/norm(b,2)
errors.append(error)
if error<tol:
return x_next,np.array(errors)
else:
x0=x_next
  • 验证
import numpy as np
from formu_lib import *
A=np.array([[2,-1,0],
[-1,3,-1],
[0,-1,2]])
b=np.array([1,8,-5])
extractVal=np.array([2,3,-1]) x1,er1=JacobiIter(A,b)
x2,er2=GaussIter(A,b)
x3,er3=SORIter(A,b,1.2) ind1,ind2,ind3=list(range(len(er1))),list(range(len(er2))),list(range(len(er3)))
plotLines([ind1,ind2,ind3],[er1,er2,er3],["Jacobi iter error","Gauss iter error","SOR iter error"]) showError(x1,extractVal)
showError(x2,extractVal)
showError(x3,extractVal)

# 雅可比迭代法
数值解: [ 1.9999746 2.99999435 -1.0000254 ],
精确解: [ 2 3 -1],
误差: 9.719103983280175e-06
# GS迭代法
数值解: [ 1.9999619 2.9999746 -1.0000127],
精确解: [ 2 3 -1],
误差: 1.2701315856479742e-05
# SOR迭代法
数值解: [ 2.00001461 2.999993 -1.00000098],
精确解: [ 2 3 -1],
误差: 4.338862621105977e-06

正定对称线性方程组的不定常迭代:最速下降法,共轭梯度法

def SPDmethodSolve(A:np.ndarray,
b:np.ndarray,
tol:float=1e-5,
maxIter:int=200)->Tuple[np.ndarray,np.ndarray]:
"""使用最速下降法求解线性方程组Ax=b input:
A: np.ndarray, 系数矩阵,必须是对称正定矩阵
b: np.ndarray, 右端常数
tol: float, 误差限
maxIter: int, 最大迭代次数 output:
x: np.ndarray, 解向量
errors: np.ndarray, 误差序列
"""
from numpy import dot
from numpy.linalg import norm
x0=np.zeros(b.shape)
i,errors=0,[]
while True :
if i>maxIter:
maxIter=1.5*maxIter
print(f"迭代次数过多,自动调整为 {maxIter}")
# 计算残量r^k作为前进方向.
r=b-dot(A,x0)
# 计算前进距离a_k
a=InnerProduct(r,r)/InnerProduct(dot(A,r),r)
x_next=x0+a*r
error=norm(b-dot(A,x_next),2)/norm(b,2)
errors.append(error)
if errors[-1]<tol:
return x_next,np.array(errors)
else:
x0=x_next
i+=1 def conjGrad(A:np.ndarray,
b:np.ndarray,
tol:float=1e-5,
maxIter:int=200)->Tuple[np.ndarray,np.ndarray]:
"""使用共轭梯度法求解线性方程组Ax=b input:
A: np.ndarray, 系数矩阵,必须是对称正定矩阵
b: np.ndarray, 右端常数
tol: float, 误差限
maxIter: int, 最大迭代次数 output:
x: np.ndarray, 解向量
errors: np.ndarray, 误差序列
"""
from numpy import dot
from numpy.linalg import norm
# 选择初值x0,初始方向p0=r0=b-Ax0
x0=np.zeros(b.shape)
i,errors=0,[]
r0=b-dot(A,x0)
p_0=b-dot(A,x0)
errors.append(norm(r0,2)/norm(b,2))
while True :
if i>maxIter:
maxIter=1.5*maxIter
print(f"迭代次数过多,自动调整为 {maxIter}")
# 计算a_k,x^{k+1}=x_k+a_k*p_k
a_k=InnerProduct(r0,p_0)/InnerProduct(dot(A,p_0),p_0)
x_next=x0+a_k*p_0
# 计算下一步的残量
r_k_next=b-dot(A,x_next)
errors.append(norm(r_k_next,ord=2)/norm(b,2))
# 如果残量足够小,则停止迭代
if errors[-1]<tol:
return x_next,np.array(errors)
else:
# 计算下一步的搜索方向
beta_k=-1*InnerProduct(r_k_next,A.dot(p_0))/InnerProduct(p_0,A.dot(p_0))
p_0=r_k_next+beta_k*p_0
x0=x_next
i+=1
  • 验证

from formu_lib import *
import numpy as np A=np.array([[4,-1,0],
[-1,4,-1],
[0,-1,4]])
b=np.array([3,2,3])
extractVal=np.array([1,1,1]) x1,er1=SPDmethodSolve(A,b,1e-6)
x2,er2=conjGrad(A,b,1e-6) plotLines([list(range(len(er1))),list(range(len(er2)))],[er1,er2],["SPD method error","conjugate gradient error"]) showError(x1,extractVal)
showError(x2,extractVal)

# SPD method
数值解: [0.99999951 0.99999951 0.99999951],
精确解: [1 1 1],
误差: 4.891480784863234e-07
# conjugate gradient method
数值解: [1. 1. 1.],
精确解: [1 1 1],
误差: 0.0

【数值计算方法】线性方程组迭代算法的Python实现的更多相关文章

  1. 多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现

    多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享 Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现 import numpy ...

  2. 多线性方程组迭代算法——Jacobi迭代算法的Python实现

    多线性方程(张量)组迭代算法的原理请看这里:若想看原理部分请留言,不方便公开分享 Gauss-Seidel迭代算法:多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现 impo ...

  3. 线性方程组迭代算法——Gauss-Seidel迭代算法的python实现

    原理: 请看本人博客:线性方程组的迭代求解算法——原理 代码: import numpy as np max=100#迭代次数上限 Delta=0.01 m=2#阶数:矩阵为2阶 n=3#维数:3X3 ...

  4. 线性方程组迭代算法——Jacobi迭代算法的python实现

    原理: 请看本人博客:线性方程组的迭代求解算法——原理 代码: import numpy as np max=100#迭代次数上限 Delta=0.01 m=2#阶数:矩阵为2阶 n=3#维数:3X3 ...

  5. 蒙特·卡罗算法的Python实现

    一 背景 此算法诞生的背景是: 曼哈顿计划,有极大的计算需求. 计算机刚开始发展,最适合做计算. 蒙特卡洛算法理论基础是概率论,实际就是暴力计算逼近理想结果.正是在以上两个背景下,它刚好得到了极大的应 ...

  6. 常用排序算法的python实现和性能分析

    常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...

  7. 数据关联分析 association analysis (Aprior算法,python代码)

    1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...

  8. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  9. 机器学习算法与Python实践之(五)k均值聚类(k-means)

    机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...

  10. 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)

    http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...

随机推荐

  1. Nginx漏洞修复:SSL/TLS 服务器瞬时 Diffie-Hellman 公共密钥过弱

    SSL/TLS 服务器瞬时 Diffie-Hellman 公共密钥过弱[原理扫描]. 需编辑 nginx.conf 解决. 1.生成 dhparams.pem. cd /usr/local/nginx ...

  2. Qt编写视频监控系统76-Onvif跨网段组播搜索和单播搜索的实现

    一.前言 在视频监控行业一般会用国际onvif工具来测试设备是否支持onvif协议,工具的名字叫ONVIF Device Manager(还有个工具叫ONVIF Device Test Tool,专用 ...

  3. Qt自定义控件集成到全平台QtCreator效果图

  4. Qt编写可视化大屏电子看板系统14-标准曲线图

    一.前言 近期将可视化大屏电子看板系统重新规划和调整项目结构代码,几个重大改变是新增启动窗体选择,可选大屏系统.控件演示.模块演示三种,其中控件演示是专门针对本系统中用到的各种自定义控件单独做的使用d ...

  5. 记一次 .NET某工业视觉软件 崩溃分析

    一:背景 1. 讲故事 前两天给训练营里的一位学员分析了一个dump,学员因为弄了一整天也没找到祸根,被我一下子弄出来了,极度想看看我是怎么分析的?由于在微信上不能一言两语表尽,干脆写一篇文章出来详细 ...

  6. 利用idea开发环境进行Spring Boot开发时maven同步更新jar依赖包时提示:sync:Cannot resolve xxx 的解决方案

    idea maven sync Cannot resolve xxx 的解决方案 经常会出现这种奇葩情况,提示找不到包 其实是因为网络波动或者突然断掉,导致包更新出现问题 直接去maven的仓库目录 ...

  7. [转]spring-framework-x.x.x.RELEASE-dist下载教程

    原文链接: spring-framework-x.x.x.RELEASE-dist下载教程

  8. [转]快速的批量修改重命名.net程序的命名空间

    在实际项目中,我们有时会遇到因为项目重构,需要修改命名空间,除了一个一个类修改外,大多数会采用批量替换的方法去重命名.昨天又遇到了此类问题,网上找过的方法说要结合ReSharper重构重命名.于是装上 ...

  9. 开源即时通讯IM框架 MobileIMSDK v6.2 发布

    一.更新内容简介 本次更新为次要版本更新,进行了若干优化(更新历史详见:码云 Release Nodes).可能是市面上唯一同时支持 UDP+TCP+WebSocket 三种协议的同类开源IM框架. ...

  10. 意外之喜——黑夜 CrossFire!!!

    在日常逛L站时,偶然发现了"友链"功能,机缘巧合下进入了specialhua的博客,又被吸引着点进了其中一篇博客,于是便通过specialhua的博客看到了黑夜的这篇文章,感觉就像 ...