简要题意

有一棵不超过十层的满二叉树,需要对每个节点进行染色。每个叶子节点会对其颜色相同的祖先节点产生贡献且黑白贡献不同。求最大贡献。

题解

首先我会暴力!我如果直接暴力枚举每个节点的颜色,复杂度就是 \(O(2^{2^n})\)。然后还要算贡献,所以还有一个 \(O(2^{n-1}(n-1))\)。然后肯定爆了。

不用说都知道是因为我们在枚举的时候重复枚举了很多相同的状态,这时我们应该单独考虑贡献。对于一个点,它的贡献应该只与其祖先节点有关,而我们暴力是去枚举了其他无关的节点。所以我们就可以设计一个 \(f_{u,S}\) 表示当前考虑到 \(u\) 节点,\(u\) 的祖先状态为 \(S\) 时子树最大贡献。然后题目中还有对黑点的个数限制,所以我们还需要加一维表示子树内黑点个数。所以最终状态是 \(f_{u,S,cnt}\) 表示 \(u\) 的子树内,其祖先染色状态为 \(S\) 且子树内有 \(cnt\) 个黑点时最大贡献。然后对于任意节点,假设它在第 \(x\) 层,则它的祖先结点状态数为 \(2^{x-1}\),子树大小为 \(2^{n-x+1}-1\),所以时间复杂度为 \(O(n\times2^n)\)。但是空间是 \(O(n\times2^{2n})\),所以我们就在搜索状态的过程中记录一个状态 \(S\),数组就只用开二维。

转移其实就是合并两个子树的信息,所以直接预处理出叶子节点的答案,然后跑一遍 \(dfs\) 然后类似合并背包一样做即可。

代码

inline void upd(int &x, int y){x = x > y ? x : y;}

void dfs(int u, int sta, int dep){
if(dep == n)return(void)(f[u][0] = c[u - lim][sta][0], f[u][1] = c[u - lim][sta][1]);
for(int i = 0; i <= qp[dep]; ++i)f[ls][i] = f[rs][i] = 0;
dfs(ls, sta, dep + 1); dfs(rs, sta, dep + 1);
for(int i = 0; i <= qp[dep]; ++i)for(int j = 0; j <= qp[dep]; ++j)upd(f[u][i + j], f[ls][i] + f[rs][j]);
for(int i = 0; i <= qp[dep]; ++i)f[ls][i] = f[rs][i] = 0;
dfs(ls, sta + qp[dep], dep + 1), dfs(rs, sta + qp[dep], dep + 1);
for(int i = 0; i <= qp[dep]; ++i)for(int j = 0; j <= qp[dep]; ++j)upd(f[u][i + j], f[ls][i] + f[rs][j]);
}
signed main(){
n = rd(), m = rd(); lim = 1 << n - 1;
for(int i = 0; i < lim; ++i)for(int j = 0; j < n - 1; ++j)v[i][j][1] = rd();
for(int i = 0; i < lim; ++i)for(int j = 0; j < n - 1; ++j)v[i][j][0] = rd();
qp[n - 1] = 1; for(int i = n - 2; ~ i; --i)qp[i] = qp[i + 1] << 1;
for(int i = 0; i < lim; ++i)for(int j = 0; j < lim; ++j)
for(int k = 0, bit = i; k < n - 1; ++k, bit >>= 1)c[j][i][bit & 1] += v[j][k][bit & 1];
dfs(1, 0, 1); int ans = 0;
for(int i = 0; i <= m; ++i)upd(ans, f[1][i]);
wt(ans);
}

luogu-P3262题解的更多相关文章

  1. Luogu P1993 题解

    p1993 小康的农场 CSP_S 1=之后就没怎么写题解.. 推荐博客食用 预备知识 明显这是一道差分约束的题,以下简称差分 有些人可能不了解差分,请点 [传送门] 至于用差分做的题的特征,无一都是 ...

  2. Luogu P3262 [JLOI2015]战争调度

    题意 给定一棵高度为 \(n\) 的完全二叉树,可以将节点设置成两种状态.如果某个叶子 \(x\) 的状态为 \(i\) 同时他的某个祖先也为 \(i\),那么这个叶子就会对祖先产生 \(f_{x,i ...

  3. luogu 3426题解 (KMP)

    题面 Byteasar 想在墙上涂一段很长的字符,他为了做这件事从字符的前面一段中截取了一段作为模版. 然后将模版重复喷涂到相应的位置后就得到了他想要的字符序列.一个字符可以被喷涂很多次,但是一个位置 ...

  4. Luogu P4643 【模板】动态dp

    题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...

  5. [题解向] CF#Global Round 1の题解(A $\to$ G)

    这里是总链接\(Link\). \(A\) 题意:求\(\sum_{i=1}^{k} a_i\times b^{k-i}\)的奇偶性, \(k = \Theta(n \log n)\) --其实很容易 ...

  6. [luogu]P1053 篝火晚会[数学][群论]

    [luogu]P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了“小教官”.在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有n个同 ...

  7. [JLOI2015]战争调度【暴力+树形Dp】

    Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...

  8. luoguP1379 八数码难题[启发式搜索]

    题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了 ...

  9. 「HNOI 2019」白兔之舞

    一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\bin ...

  10. [HNOI2003]消防局的设立 树形dp // 贪心

    https://www.luogu.org/problemnew/show/P2279 一开始就想到了贪心的方法,不过一直觉得不能证明. 贪心的考虑是在深度从深到浅遍历每个结点的过程中,对于每个没有覆 ...

随机推荐

  1. RabbitMQ vs MSMQ

  2. Jetpack Compose 的原理性文章

    正在写一篇关于UI的思考,接触到 Android 的 Jetpack Compose: 从第一原则撰写 | 可理解的胡言乱语

  3. 【原创】xenomai环境下开源实时数控系统LinuxCNC编译安装

    linuxcnc 在xenomai下的构建简单记录,参考链接https://www.linuxcnc.org/docs/devel/html/code/building-linuxcnc.html 1 ...

  4. 如何在 Linux 中使用 grep 命令的排除功能

    来自grep 是一种强大的命令行工具,用于在一个或多个输入文件中搜索与正则表达式匹配的行,并将匹配的行标准输出.在本文中介绍如何在使用 grep 搜索时排除一个或多个单词或目录.   排除单词或多个条 ...

  5. Windows 11 下 Virtualbox 6.1.34 出现 End kernel panic - not syncing: attempted to kill the idle task

    前言小半年没用 Virtualbox 了,切换到了 VMware,今天又切换回去(无聊),但是安装虚拟机出现这个错误. 解决方法根据 Virtualbox 论坛的讨论[1]和[2],首先明确 系统必须 ...

  6. manim边学边做--同伦变换

    在Manim中,移动一个元素除了之前介绍的方法之外,还可以通过同伦运算来移动一个元素. 与普通的移动元素方式相比,使用同伦运算移动一个元素时,实际上是在考虑整个空间的连续变形过程中元素的相应变化. 这 ...

  7. Qt控件SDK使用示例大全

    文章 链接 01表盘控件-01汽车仪表盘-gaugecar https://qtchina.blog.csdn.net/article/details/120240257 01表盘控件-02圆弧仪表盘 ...

  8. Vue整合Cesium的博文

    参考链接: 1.Vue 集成 Cesium 2.vue/cli3引入cesium 3.Vue2+Cesium.js展示地图 4.vue-cli3 引入 cesium 5.Vue Cli 4 引入 Ce ...

  9. 鸿蒙ArkUI-X简介

    ArkUI是一套构建分布式应用的声明式UI开发框架.它具备简洁自然的UI信息语法.丰富的UI组件.多维的状态管理,以及实时界面预览等相关能力,帮助您提升应用开发效率,并能在多种设备上实现生动而流畅的用 ...

  10. 使用 httputils + sbe (Simple Binary Encoding) 实现金融级 java rpc

    1.认识 Simple Binary Encoding (sbe) 高性能Java库 Agrona 的主要目标是减少性能瓶颈,通过提供线程安全的直接和原子缓冲区.无装箱操作的原始类型列表.开散列映射和 ...