一、概述

企业应用集成大语言模型(LLM)落地的两大痛点:

  • 知识局限性:LLM依赖静态训练数据,无法覆盖实时更新或垂直领域的知识;
  • 幻觉:当LLM遇到训练数据外的提问时,可能生成看似合理但错误的内容。

用最低的成本解决以上问题,需要使用 RAG 技术,它是一种结合信息检索技术与 LLM 的框架,通过从外部 知识库 动态检索相关上下文信息,并将其作为 Prompt 融入生成过程,从而提升模型回答的准确性;

本文将以AI智能搜索为场景,基于 Spring AI 与 RAG 技术结合,通过构建实时知识库增强大语言模型能力,实现企业级智能搜索场景与个性化推荐,攻克 LLM 知识滞后与生成幻觉两大核心痛点。

关于 Spring AI 与 DeepSeek 的集成,以及 API-KEY 的申请等内容,可参考文章《Spring AI与DeepSeek实战一:快速打造智能对话应用

二、RAG数据库选择

构建知识库的数据库一般有以下有两种选择:

维度 向量数据库 知识图谱
数据结构 非结构化数据(文本/图像向量) 结构化关系网络(实体-关系-实体)
查询类型 语义相似度检索 多跳关系推理
典型场景 文档模糊匹配、图像检索 供应链追溯、金融风控
性能指标 QPS>5000 复杂查询响应时间>2s
开发成本 低(API即用) 高(需构建本体模型)

搜索推荐场景更适合选择 向量数据库

三、向量模型

向量模型是实现 RAG 的核心组件之一,用于将非结构化数据(如文本、图像、音频)转换为 高维向量(Embedding)的机器学习模型。这些向量能够捕捉数据的语义或结构信息,使计算机能通过数学运算处理复杂关系。

向量数据库是专门存储、索引和检索高维向量的数据库系统

spring-ai-alibaba-starter 默认的向量模型为 text-embedding-v1

可以通过 spring.ai.dashscope.embedding.options.model 进行修改。

四、核心代码

4.1. 构建向量数据

创建 resources/rag/data-resources.txt 文件,内容如下:

1. {"type":"api","name":"测试api服务01","topic":"综合政务","industry":"采矿业","remark":"获取采矿明细的API服务"}
2. {"type":"api","name":"新能源车类型","topic":"能源","industry":"制造业","remark":"获取新能源车类型的服务"}
3. {"type":"api","name":"罚款报告","topic":"交通","industry":"制造业","remark":"获取罚款报告的接口"}
4. {"type":"api","name":"光伏发电","topic":"能源","industry":"电力、热力、燃气及水生产和供应业","remark":"获取光伏发电的年度报告"}
5. {"type":"api","name":"收益明细2025","topic":"综合政务","industry":"信息传输、软件和信息技术服务业","remark":"2025年的收益明细信息表"}

创建向量数据库的 Bean

@Bean
public VectorStore vectorStore(EmbeddingModel embeddingModel
, @Value("classpath:rag/data-resources.txt") Resource docs) {
VectorStore vectorStore = SimpleVectorStore.builder(embeddingModel).build();
vectorStore.write(new TokenTextSplitter().transform(new TextReader(docs).read()));
return vectorStore;
}
  • SimpleVectorStoreSpring AI 提供的一个基于内存的向量数据库;
  • 使用 TokenTextSplitter 来切分文档。

4.2. 创建ChatClient

private final ChatClient chatClient;

public RagController(ChatClient.Builder builder, VectorStore vectorStore) {
String sysPrompt = """
您是一个数据产品的智能搜索引擎,负责根据用户输入的内容进行精准匹配、模糊匹配和近义词匹配,以搜索相关的数据记录。
您只能搜索指定的内容,不能回复其他内容或添加解释。
您可以通过[search_content]标识符来表示需要搜索的具体内容。要求您返回匹配内容的完整记录,以JSON数组格式呈现。
如果搜索不到内容,请返回[no_data]。
""";
this.chatClient = builder
.defaultSystem(sysPrompt)
.defaultAdvisors(
new QuestionAnswerAdvisor(vectorStore, new SearchRequest())
)
.defaultOptions(
DashScopeChatOptions.builder()
.withModel("deepseek-r1")
.build()
)
.build();
}
  • 通过系统 Prompt 来指定智能体的能力;
  • 通过 QuestionAnswerAdvisor 绑定向量数据库。

4.3. 搜索接口

@GetMapping(value = "/search")
public List<SearchVo> search(@RequestParam String search, HttpServletResponse response) {
response.setCharacterEncoding("UTF-8");
PromptTemplate promptTemplate = new PromptTemplate("[search_content]: {search}");
Prompt prompt = promptTemplate.create(Map.of("search", search)); return chatClient.prompt(prompt)
.call()
.entity(new ParameterizedTypeReference<List<SearchVo>>() {});
}

这里通过 entity 方法来实现搜索结果以结构化的方式返回。

4.4. 测试接口

4.4.1. 搜索新能源

除了模糊匹配了新能源车之外,还匹配了和新能源相关的光伏数据。

4.4.21. 搜索收入

匹配同义词的收益数据。

五、总结

本文以智能搜索引擎场景,通过 RAG 技术,实现了全文搜索、模糊搜索、同义词推荐等功能,并以结构化的方式返回搜索结果。需要注意的是,在企业应用中,要把 SimpleVectorStore 改为成熟的第三方向量数据库,例如 milvuselasticsearchredis 等。

六、完整代码

  • Gitee地址:

https://gitee.com/zlt2000/zlt-spring-ai-app

  • Github地址:

https://github.com/zlt2000/zlt-spring-ai-app

Spring AI与DeepSeek实战三:打造企业知识库的更多相关文章

  1. Spring Boot 揭秘与实战(三) 日志框架篇 - 如何快速集成日志系统

    文章目录 1. 默认的日志框架 logback2. 常用的日志框架 log4j 1.1. 日志级别 1.2. 日志文件 3. 源代码 Java 有很多日志系统,例如,Java Util Logging ...

  2. Spring Boot 揭秘与实战(六) 消息队列篇 - RabbitMQ

    文章目录 1. 什么是 RabitMQ 2. Spring Boot 整合 RabbitMQ 3. 实战演练4. 源代码 3.1. 一个简单的实战开始 3.1.1. Configuration 3.1 ...

  3. 生成式AI对业务流程有哪些影响?企业如何应用生成式AI?一文看懂

    集成与融合类ChatGPT工具与技术,以生成式AI变革业务流程 ChatGPT背后的生成式AI,聊聊生成式AI如何改变业务流程 ChatGPT月活用户过亿,生成式AI对组织的业务流程有哪些影响? 生成 ...

  4. Spring线程池开发实战

    Spring线程池开发实战 作者:chszs,转载需注明. 作者博客主页:http://blog.csdn.net/chszs 本文提供了三个Spring多线程开发的例子,由浅入深,由于例子一目了然, ...

  5. 【SSH项目实战三】脚本密钥的批量分发与执行

    [SSH项目实战]脚本密钥的批量分发与执行 标签(空格分隔): Linux服务搭建-陈思齐 ---本教学笔记是本人学习和工作生涯中的摘记整理而成,此为初稿(尚有诸多不完善之处),为原创作品,允许转载, ...

  6. AI应用开发实战 - 定制化视觉服务的使用

    AI应用开发实战 - 定制化视觉服务的使用 本篇教程的目标是学会使用定制化视觉服务,并能在UWP应用中集成定制化视觉服务模型. 前一篇:AI应用开发实战 - 手写识别应用入门 建议和反馈,请发送到 h ...

  7. AI应用开发实战 - 手写识别应用入门

    AI应用开发实战 - 手写识别应用入门 手写体识别的应用已经非常流行了,如输入法,图片中的文字识别等.但对于大多数开发人员来说,如何实现这样的一个应用,还是会感觉无从下手.本文从简单的MNIST训练出 ...

  8. AI应用开发实战 - 从零开始搭建macOS开发环境

    AI应用开发实战 - 从零开始搭建macOS开发环境 本视频配套的视频教程请访问:https://www.bilibili.com/video/av24368929/ 建议和反馈,请发送到 https ...

  9. spring事务详解(三)源码详解

    系列目录 spring事务详解(一)初探事务 spring事务详解(二)简单样例 spring事务详解(三)源码详解 spring事务详解(四)测试验证 spring事务详解(五)总结提高 一.引子 ...

  10. Spring Boot 揭秘与实战 源码分析 - 工作原理剖析

    文章目录 1. EnableAutoConfiguration 帮助我们做了什么 2. 配置参数类 – FreeMarkerProperties 3. 自动配置类 – FreeMarkerAutoCo ...

随机推荐

  1. c# yield return

    这个函数在处理循环时可以每生成一个数据就返回一个数据让主函数进行处理: static void Main(string[] args) { foreach (var item in GetNumber ...

  2. CAS实现原理

    一.什么是CAS? 在计算机科学中,比较和交换(Conmpare And Swap)是用于实现多线程同步的原子指令. 它将内存位置的内容与给定值进行比较,只有在相同的情况下,将该内存位置的内容修改为新 ...

  3. Storm基本概念

    storm简介   场景 伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样.更加便捷,同时对于信息的时效性要求也越来越高.举个搜索场景中的例子,当一个卖家发布了一条宝 ...

  4. nginx平台初探-4

    模块开发高级篇(30%)   变量(80%)   综述 在Nginx中同一个请求需要在模块之间数据的传递或者说在配置文件里面使用模块动态的数据一般来说都是使用变量,比如在HTTP模块中导出了host/ ...

  5. linux:shell

    关于shell 什么是shell? shell,是用c编写的,既是命令语言,也是一种程序设计语言 shell指一种应用程序,该程序提供一个界面,用户可通过该界面访问操作系统 什么是脚本? 脚本是一条文 ...

  6. Java线程的通信

    当需要多个线程共同完成一件任务,而且需要有规律的执行,那么多个线程之间需要一定的通信机制,可以协调他们的工作,以此实现多线程共同操作一份数据. 1 等待唤醒机制 这是一种线程间的协作机制,与争夺锁的竞 ...

  7. mysql 使用 ibd 恢复数据

    分四步: 1. 按照ibd对应的表结构,创建新表: 2. 执行: ALTER TABLE `t_健忘就多写博客` DISCARD TABLESPACE; 或者 停止mysql服务后,删除对应的 xxx ...

  8. 滑动窗口模板在字符串中的巧妙应用|LeetCode 76 最小覆盖子串

    LeetCode 76 最小覆盖子串 点此看全部题解 LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中) 更多干货,请关注公众号[忍者算法],回复[刷题清单]获取完整题解目录- ...

  9. 云主机(操作系统:CentOS7版本)安装nfs客户端,挂载文件系统

    本文分享自天翼云开发者社区<云主机(操作系统:CentOS7版本)安装nfs客户端,挂载文件系统>,作者:c****n 1.保证宿主机上有nfs-utils 1.1若宿主机yum源不可以用 ...

  10. deepseek等AI工具是程序员技能发展的双刃剑

    2025年,全球已有73%的程序员日常使用AI编码工具(Gartner 2025Q1数据).当我们惊叹于GitHub Copilot生成完整功能模块仅需10秒时,也需要警惕一个现象:新一代程序员在ID ...